بررسی عددی اثر ساختار نازل های تزریق کننده گاز جهت افزایش راندمان جدایش انرژی در لوله گردابه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

در مقاله حاضر با استفاده از شبیه سازی و تکنیک دینامیک سیالات محاسباتی، به بررسی تأثیر شکل هندسی نازل­های مارپیچ بر روی عملکرد دستگاه لوله گردابه­ای پرداخته شده است. جهت حل معادلات میدان جریان از مدل تلاطمی k-ε  استفاده شده است و هندسه مدل نیز ثابت در نظر گرفته شده است. هدف اصلی دست یابی به مینیمم دمای خروجی سرد و بیشینه سرعت چرخشی در لوله گردابه­ای می­باشد. در این مقاله، دستگاه با سه مجموعه نازل شامل 3 نازل مستقیم، 6 نازل مستقیم و 3 نازل مارپیچ تجهیز شده است. نتایج حاکی از ایجاد دمای سرد پایین­تر برای لوله گردابه­ای با 3 نازل مارپیچ نسبت به دو مدل دیگر می­باشد. همچنین این نوع نازل باعث ایجاد سرعت چرخشی بالاتری در داخل دستگاه خصوصاً در محفظه چرخش می­شود.

کلیدواژه‌ها

موضوعات


Ranque, G.J., Experiences Sur la Détente Giratoire Avec Simultanes d’un Echappement d’air Chaud et d’un Enchappement d’air Froid, J. Phys.Radium, Vol 4, pp. 112-114, 1933.
[2] Hilsch, R., Die Expansion Von Gasen im Zentrifugalfeld als Kälteproze, Z. Naturforschung, Vol 1, pp. 208-214, 1946.
[3] Elser, K., Hoch, M., 1951, Das Verhalten Verschiedener Gase und die Trennung von Gasgemischen in einem Wirbelrohr, Z. Naturf, 6a, pp. 25-31, 1951.
[4] Martynovskii, V.S., Alekseev, V.P., Investigation of The Vortex Thermal Separation Effect For Gasses and Vapors, Soviet Physics, pp. 2233-2243, 1957.
[5] Takahama, H., 1965, Studies on Vortex Tube, Bull. JSME, Vol. 8, pp. 433-440.
[6] Bruun, H.H., Experimental Investigation of The Energy Separation in Vortex Tubes, Journal of Mechanic Engineering Science, Vol. 11, pp. 567-582, 1969.
[7] Skye, H.M., Nellis, G.F., Klein, S.A., Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube. Int. J. Refrig., Vol. 29, pp. 71-80, 2006.
[8] Fulton, C.D., Ranque’s Tube, J Refrig Eng., Vol. 5, pp. 473-479, 1950.
[9] Deissler, R.G., Perlmutter, M., Analysis of The Flow and Energy Separation in a Vortex Tube, International Journal of Heat Mass Transfer,Vol. 1, pp. 173-191, 1960.
[10] Young, J., Mc Cutcheon, A.R.S, The Performance of Ranque-Hilsch Vortex Tube, The Chemical Engineering, pp. 522-528, 1973.
[11] Ahlborn, B., Keller, J.U., Staudt, R., Treitz, G., Rebhan, E., Limits of Temperature Separation in a Vortex Tube, Journal of Physics D: Appl. Phys., Vol. 27, pp. 480-488, 1994.
[12] Stephan, K., Lin, S., Drust, M., An Investigation of Energy Separation in a Vortex Tube, International Journal of Heat Transfer, Vol. 3, pp. 341-348, 1993.
[13] Stephan, K., Lin, S., Drust, M., Seher, D., A Similarity Relation For Energy Separation in a Vortex Tub, Int. J. of Heat Mass Transfer, Vol. 6, pp. 911-920, 1984.
[14] Kirmaci V., Optimization of Counter Flow Ranque-Hilsch Vortex Tube Performance UsingTaguchi Method, International Journal of Refrigeration,  Vol. 32, pp. 1487-1494, 2009.
[15] Akhesmeh, S., Pourmahmoud, N., Sedgi, H., Numerical Study of The Temperature Separation in The Ranque-Hilsch Vortex Tube, American Journal of Engineering and Applied Sciences, Vol. 3, pp. 181-187, 2008.
[16] Bramo, A.R., Pourmahmoud, N., A Numerical Study on The Effect of Length to Diameter Ratio and Stagnation Point on The Performance of Counter Flow Vortex Tube, Aust. J.        Basic & Appl. Sci., Vol. 4, pp. 4943-4957, 2010.
[17] Kirmaci, V., Uluer, O., An Experimental Investigation of The Cold Mass Fraction, Nozzle Number, and Inlet Pressure Effects on Performance of Counter Flow Vortex Tube, Journal of Heat Transfer, Vol. 131, pp. 603-609, 2009.
[18] Shamsoddini, R., Hossein Nezhad, A., Numerical Analysis of The Effects of Nozzles Number on The Flow and Power of Cooling of a Vortex Tube, International Journal of Refrigeration, Vol. 33, pp. 774-782, 2010.
[19] Behera, U., et al., CFD Analysis and Experimental Investigations Towards Optimizing The Parameters of Ranque-Hilsch Vortex Tube, Int. J. Heat and Mass Transfer, Vol. 48, pp. 1961-1973, 2005.