تحلیل کمانش استوانه مشبک کامپوزیتی با پوسته درونی و بیرونی تحت ‌فشار خارجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه ملایر، ملایر، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه ملایر، ملایر، ایران

چکیده

در سال‌های اخیر پوسته‌های استوانه‌ای تقویت‌شده در اجزای اصلی ساختارهای هواپیمایی، موشکی و دریایی مورداستفاده قرارگرفته شده است. در این مقاله کمانش استوانه مشبک کامپوزیتی با پوسته درونی و بیرونی تحت‌ فشار خارجی مورد تحلیل و بررسی قرار می‌گیرد. این کار با ایجاد یک مدل تحلیلی برای تعیین پارامترهای سختی معادل یک پوسته استوانه‌ای کامپوزیتی تقویت‌شده مشبک انجام‌شده است. بر اساس اصل برهم‌نهی سختی تقویت‌کننده‌ها با سختی پوسته جمع می‌گردد تا پارامترهای سختی معادل کل ساختار به دست آید. معادلات حاکم بر ساختارهای مشبک استوانه­ای بر اساس میدان جابجایی و روابط تنش و کرنش به‌صورت ماتریسی با استفاده از نظریه کلاسیک پوسته‌ها تحت شرایط مرزی تکیه­گاهی ساده و گیردار حل می­گردد. نتایج نشان می‌دهد افزایش پارامترهای زاویه، طول سلول مشبک و سطح مقطع باعث افزایش سختی معادل و بار بحرانی کمانش تا قبل از رسیدن به مود کمانش موضعی تقویت‌کننده‌ها می‌شود ولی افزایش بیشتر آن‌ها کمانش موضعی و کمانش سازه را در پی دارد؛ بنابراین می‌توان برای تمامی پارامترهای مؤثر، مقدار بهینه‌ای را در نظر گرفت و همچنین برای مؤثر بودن ساختار مشبک به تعداد محدودی تقویت‌کننده با زاویه بهینه، فاصله طولی و سطح مقطع مناسب جهت جلوگیری از کمانش موضعی و درنهایت کمانش کلی نیاز است.

کلیدواژه‌ها

موضوعات


 [1] Vasiliev V. V., Barynin V. A. and Razin A. F., Anisogrid composite lattice structures–Development and aerospace applications, Compos. Struct., Vol. 94, No. 3, pp. 1117–1127, 2012.
 [2] A. C. Ugural, Stresses in Plates and Shells. McGraw-Hill, 1981.
[3] Jaunky N., Knight N. F. and Ambur D. R., Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels, Compos. Part B Eng., Vol. 27, No. 5, pp. 519–526, 1996.
 [4] Kidane S., Li G., Helms J., Pang S.-S. and Woldesenbet E., Buckling load analysis of grid stiffened composite cylinders,” Compos. Part B Eng., Vol. 34, No. 1, pp. 1–9, 2003.
[5] Fan H., Yang L., Sun F. and Fang D., Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites, Compos. Part A Appl. Sci. Manuf., Vol. 52, pp. 118–125, 2013.
 [6] Rathinam N. and Prabu B., Static buckling analysis of thin cylindrical shell with centrally located dent under uniform lateral pressure, Int. J. Steel Struct., Vol. 13, No. 3, pp. 509–518, Sep. 2013.
[7] Zheng Q., Ju S. and Jiang D., Anisotropic mechanical properties of diamond lattice composites structures, Compos. Struct., Vol. 109, pp. 23–30, 2014.
 [8] Sun J., Xu X. and Lim C. W., Buckling of cylindrical shells under external pressure in a Hamiltonian system, J. Theor. Appl. Mech., Vol. 52, No. 3, pp. 641–653, 2014.
[9] Sofiyev A. H. and Kuruoglu N., Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures, Thin-Walled Struct., Vol. 78, pp. 121–130, 2014.
[10] Fan H., Qu Z., Xia Z. and Sun F., Designing and compression behaviors of ductile hierarchical pyramidal lattice composites, Mater. Des., Vol. 58, pp. 363–367, 2014.
 [11] Satouri S., Kargarnovin M. H., Allahkarami F. and Asanjarani A., Application of third order shear deformation theory in buckling analysis of 2D-functionally graded cylindrical shell reinforced by axial stiffeners, Compos. Part B Eng., Vol. 79, pp. 236–253, 2015.
[12] Sofiyev A. H., Buckling analysis of freely-supported functionally graded truncated conical shells under external pressures, Compos. Struct., Vol. 132, pp. 746–758, 2015.
 [13] V Lopatin A., Morozov E. V. and Shatov A. V., Buckling of uniaxially compressed composite anisogrid lattice plate with clamped edges, Compos. Struct., vol. 157, pp. 187–196, 2016.
[14] Tu T. M. and Van Loi N., Vibration Analysis of Rotating Functionally Graded Cylindrical Shells with Orthogonal Stiffeners, Lat. Am. J. Solids Struct., Vol. 13, No. 15, pp. 2952–2969, 2016.
 [15] Reddy J. N., Mechanics of laminated composite plates and shells: theory and analysis. CRC press, 2004.
[16] Qatu M. S., Vibration of laminated shells and plates. Elsevier, 2004.
 [17] Lopatin A. V and Morozov E. V, Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure, Compos. Struct., Vol. 122, pp. 209–216, 2015.
[18] Lam K. Y. and Loy C. T., Influence of boundary conditions for a thin laminated rotating cylindrical shell, Compos. Struct., Vol. 41, No. 3–4, pp. 215–228, 1998.