تبلور مجدد و سینتیک درشت شدن ساختار آلیاژ آلومینیوم 7075 در طی فرایندهای سیمای مرسوم و اصلاح شده جدید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد و متالورژی، دانشگاه بناب، بناب، ایران

2 استاد، گروه مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در این پژوهش رفتار تبلور مجدد و سینتیک درشت شدن ساختار آلیاژ 7075 در حین فرایندهای ترمومکانیکی سیمای مرسوم و اصلاح شده جدید مورد بررسی قرار گرفت. فرایند سیمای مرسوم با اعمال کرنش فشاری تک محوری به میزان 55 %-10 در دمای محیط و سپس ذوب مجدد جزئی در دماها و زمان­های مختلف انجام پذیرفت. فرایند سیمای اصلاح شده جدید با بکارگیری فرایند پرس-اکستروژن مکرر برای اولین بار جهت تهیه شمش نیمه جامد آلیاژ 7075 توسعه داده شد. نمونه­ها ابتدا تحت سیکل­های مختلف فرایند پرس- اکستروژن مکرر در دمای °C 250 و سپس تحت عملیات حرارتی نیمه جامد قرار گرفتند. نتایج مطالعات ریزساختاری مشخص نمود که در نمونه­های تهیه شده توسط فرایند سیمای اصلاح شده جدید سرعت تبلور مجدد بیشتر بوده و متوسط اندازه دانه به میزان قابل توجهی کاهش و میزان کرویت دانه­ها بهبود می­یابد. از رابطه لیفشیتز-اسلیوزوف-واگنر (LSW) جهت مطالعه فرایند درشت شدن ریزساختار نمونه­های نیمه جامد استفاده شد. نرخ درشت شدن دانه­های جامد در فرایند سیمای اصلاح شده جدید در مقایسه با فرایند سیمای مرسوم به میزان قابل توجهی کندتر است.

کلیدواژه‌ها


[1]  Kirkwood D.H., Suery M., Kapranos P., Atkinson H.V., Semi-solid processing of alloys, Springer, Berlin Heidelberg, 2009.
[2]  Flemings M.C., Behavior of metal alloys in the semisolid state, Metallurgical Transactions A, Vol. 22A, pp. 957-981, 1991.
[3]  Koeune R., Semi-solid Constitutive Modeling for the Numerical Simulation of Thixoforming Processes, PhD Thesis, University of Liege, 2011.
[4]  Zhang Q.Q., Cao Z.Y., Zhang Y.F., Su G.H., Liu Y.B., Effect of compression ratio on the microstructure evolution of semisolid AZ91D alloy, Journal of Materials Processing Technology, Vol. 184, pp. 195-200, 2007.
[5]  Chen T.J., Hao Y., Sun J., Microstructural evolution of previously deformed ZA27 alloy during partial remelting, Materials Science and Engineering A, Vol. 337, pp. 73-81, 2002.
[6]  Tzimas E., Zavaliangos A., A comparative characterization of near-equiaxed microstructures as produced by spray casting, magnetohydrodynamic casting and the stress induced melt activated process, Materials Science and Engineering A, Vol. 289, pp. 217-227, 2000.
[7]  Lin H.Q., Wang J.G., Wang H.Y., Jiang Q.C., Effect of predeformation on the globular grains in AZ91D alloy during strain induced melt activation (SIMA) process, Journal of Alloys and Compounds, Vol. 431, pp. 141-147, 2007.
[8]  Rikhtegar F., Ketabchi M., Investigation of mechanical properties of 7075 Al alloy formed by forward thixoextrusion process, Materials and Design, Vol. 31, pp. 3943-3948, 2010.
[9]  Young K.P., Kyonka C.P., Courtois J.A.  Fine grained metal composition, US Patent No. 4 415 374, 1983.
[10]   Yan G., Zhao S.H., Ma S.H., Shou H., Microstructural Evolution of A356.2 Alloy Prepared by the SIMA Process, Materials Characterization, Vol. 69, pp. 45- 51, 2012.
[11]   Song Y. B., Park, K. T., Hong, C. P., Recrystallization behavior of 7175 Al alloy during modified strain-induced melt-activated (SIMA) process, Materials Transactions, vol. 47, pp. 1250-1256, 2006.
[12]   Alipour M., Emamy M., Effects of Al–5Ti–1B on the structure and hardness of a super high strength aluminum alloy produced by strain-induced melt activation process, Materials and Design, Vol. 32, pp. 4485–4492, 2011.
[13]   Mirjavadi S. S., Alipour M., Hamouda A. M. S., Besharati Givi M. K., Emamy M., Investigation of the effect of Al-8B master alloy and strain-induced melt activation process on dry sliding wear behavior of an Al–Zn–Mg–Cu alloy, Materials and Design, Vol. 53, pp. 308-316, 2014.
[14]   Jiang J., Wang Y., Luo Sh., Application of equal channel angular extrusion to semi-solid processing of magnesium alloy, Materials Characterization, Vol. 58, pp. 190-196, 2007.
[15]   Ashouri S., Nili-Ahmadabadi M., Moradi M., Iranpour M., Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP, Journal of Alloys and Compounds, Vol. 466, pp. 67–72, 2008.
[16]   Jiang J., Wang Y., Qu J., Du Zh., Sun Y., Luo Sh., Microstructure evolution of AM60 magnesium alloy semisolid slurry prepared by new SIMA, Journal of Alloys and Compounds, Vol. 497, pp. 62-67, 2010.
[17]   Fu J., Wang K., Li X., Microstructure evolution and coarsening mechanism of 7075 semi-solid aluminum alloy predeformed by ECAP method, In Materials Science and Technology conference, Utah, USA, 2016.
[18]   Zhao Z. D., Chen Q., Tang Z. J., Hu C. K., Microstructural evolution and tensile mechanical properties of AM60B magnesium alloy prepared by the SIMA route, Journal of Alloys and Compounds, Vol. 497, pp. 402–411, 2010.
[19]   Chen Q., Zhao Z., Zhao Z. H., Hu C. H., Shu D., Microstructure development and thixoextrusion of magnesium alloy prepared by repetitive upsetting-extrusion, Journal of Alloys and Compounds, Vol. 509, pp. 7303–7315, 2011.
[20]   Binesh B., Aghaie-Khafri M., Daneshi M., Simulation and experimental study of severe plastic deformation of 7075 Al alloy processed by repetitive upsetting-extrusion, Modares Mechanical Engineering, Vol. 17, pp. 323-332,2017.
[21]   Zaharia L., Comaneci R., Chelariu R., Luca D., A new severe plastic deformation method by repetitive extrusion and upsetting, Materials Science and Engineering A, Vol. 595, pp. 135-142, 2014.
[22]   Binesh B., Aghaie-Khafri M., RUE-based semi-solid processing: Microstructure evolution and effective parameters, Materials and Design, Vol. 95, pp. 268-286, 2016.
[23]   ASM Handbook, Alloy phase diagrams, 3ASM International, Materials Park, OH, 2004.
[24]   Doherty R. D., Lee H. –I., Feest E. A., Microstructure of stir-cast metals, Materials Science and Engineering, Vol. 65, pp. 181-189, 1984.
[25]   Fan Z., Semisolid metal processing, International Materials Reviews, Vol. 47, pp. 49-85, 2002.
[26]   Tzimas E., Zavaliangos A., Evolution of near-equiaxed microstructure in the semisolid state, Materials Science and Engineering A, Vol. 289, pp. 228-240, 2000.
[27]   Annavarapu S., Doherty R. D., Inhibited coarsening of solid-liquid microstructures in spray casting at high volume fractions of solid, Acta Metallurgica et Materialia, Vol. 43, pp. 3207-3230, 1995.
[28]   Manson-Whitton E. D., Stone I. C., Jones J. R., Grant P. S., Cantor B., Isothermal grain coarsening of spray formed alloys in the semi-solid state, Acta Materialia, vol. 50, pp. 2517-2535, 2002.
[29]   Kim S. S., Yoon D. N., Coarsening behavior of Mo grains dispersed in liquid matrix, Acta Metallurgica, Vol. 31, pp. 1151-1157, 1983.
[30]   Boettinger W. J., Voorhees P. W., Dobbyn R. C., Burdette H. E., A study of the coarsening of liquid-solid mixtures using synchroton radiation microradiography, Metallurgical Transactions A, Vol. 18A, pp. 487-490, 1987.
[31]   Bolouri A., Shahmiri M., Kang C. G., Coarsening of equiaxed microstructure in the semisolid state of aluminum 7075 alloy through SIMA processing, Journal of Materials Science, Vol. 47, pp. 3544-3553, 2012.
[32]   De Freitas E. R., Ferracini Jr., E., Ferrante, M., Microstructure and rheology of an AA2024 aluminium alloy in the semi-solid state and mechanical properties of a back-extruded part, Journal of Materials Processing Technology, Vol. 146, pp. 241-249, 2004.