کشش عمیق هیدرودینامیکی با فشار شعاعی فنجان‌های مربعی دولایه آلومینیوم- فولاد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

چکیده

در این پژوهش شکل‌دهی فنجان‌های مربعی از ورق دولایه آلومینیوم-فولاد در فرآیند کشش عمیق هیدرودینامیکی با فشار شعاعی با هدف بررسی پارامترهای فرآیند و تأثیر آنها بر ضخامت فنجان مطالعه شده است.  نخست، با شبیه­سازی اجزای محدود با نرم­افزار آباکوس، مسیرهای فشار متفاوت برای شکل­دهی فنجان مربعی بررسی و آزمایش­های تجربی برای صحت­سنجی شبیه­سازی انجام شد. بر اساس نتایج مشخص شد مقادیر کمتر فشار بیشینه و سرعت سنبه‌، منجر به وقوع پارگی در ناحیه تماس شعاع سنبه با ورق می­گردد. همچنین در فشار‌ها و سرعت‌های بالاتر، توزیع ضخامت فنجان­­های مربعی به مسیر فشار وابسته است. با تعیین مسیر فشار مطلوب و اعمال آن، فنجان‌ مربعی با نسبت کشش بالا شکل داده شد. در مرحله بعد، تأثیر پارامترهای هندسی و فرآیندی با شبیه­سازی اجزای محدود در مسیر فشار مطلوب، توسط طراحی آزمایش بررسی و با روش آماری تحلیل واریانس مورد تفسیر قرار گرفت. از بین عوامل بررسی شده، اثر مستقیم شعاع نوک سنبه و اثر متقابل بین نسبت ضخامت لایه‌ها و جانمایی ورق، تاثیر معناداری بر حداقل ضخامت فنجان مربعی داشتند. در نهایت نیز مقادیر بهینه عوامل مؤثر به دست آمدند.

کلیدواژه‌ها


[1]     Thiruvarudchelvan S., and Travis F.W., Hydraulic-Pressure-Enhanced Cup-Drawing Processes-An Appraisal. Journal of Materials Processing Technology, Vol. 140, pp. 70-75, 2003.
[2]     Zhang S.H., Wang Z.R., Xu Y., Wang Z.T., and Zhou L.X., Recent developments in sheet hydroforming technology. Journal of Materials Processing Technology, Vol. 151, pp. 237-241, 2004.
[3]     Lang L., Danckert J., and Nielsen K.B., Investigation into hydrodynamic deep drawing assisted by radial pressure Part II, Numerical analysis of the drawing mechanism and the process parameters. J Journal of Materials Processing Technology, Vol. 166, pp. 150-161, 2005.
[4]     Lang L., Danckert J., and Nielsen K.B., Investigation into hydrodynamic deep drawing assisted by radial pressure Part I, Experimental observations of the forming process of aluminum alloy. Journal of Materials Processing Technology, Vol. 148, pp. 119-131, 2004.
[5]     Lang L., Danckert J., Nielsen KB., Analysis of key parameters in sheet hydroforming compined with stretching forming and deep drawing.
[6]     Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 218, pp 845–856, 2004.
[7]     Lang L.H., Danckert J., Nielsen K.B., Kangb D.C., Zhang S.H., Key technologies of the simulation of the hydrodynamic deep drawing of irregular parts. Journal of Materials Processing Technology, Vol. 150, pp. 40–47, 2004.
[8]     Bagherzadeh S., Mollaei Darian B., Malekzadeh K., Theoretical study on hydro-mechanical deep drawing process of bimetallic sheets and experimental observations. Journal of Materials Processing Technology, Vol. 212, pp. 1840-1849, 2012. 
[9]     Bagherzadeh S., Mirnia MJ., Mollaei Darian B., Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheets. Journal of Manufacturing Proccesses, Vol.18, pp.131-140, 2015.
[10] Hashemi A., Hoseinpour Gollo M., Seyedkashi S.M.H., Study of Al/St Laminated Sheet and Constituent Layers in Radial Pressure Assisted Hydrodynamic Deep Drawing. Materials and Manufacturing Processes, Vol. 32 (1), pp. 54-61, 2017.
[11] Hashemi A., Hoseinpour Gollo M., Seyedkashi S.M.H., Pourkamali‑Anaraki A., A new simulation‑based metaheuristic approach in optimization of bilayer composite sheet hydroforming. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 39, pp. 4011-4020, 2017.
[12] Seyedkashi S.M.H., F. Rahmani, H. Amirabadi, M. Hoseinpour Gollo, Study of Process Window Diagram in Hydromechanical Deep Drawing of Square Cup with Aluminium/Steel Double Layer Sheet. Modares Mechanical Engineering, Vol. 99, No 9, pp. 1-11, 2016 (in Persian).
[13] Liu X., Xu Y., Yuan S., Effects of loading paths on hydrodynamic deep drawing with independent radial hydraulic pressure of aluminum alloy based on numerical simulation, Journal of Materials Science & Technology, Vol. 24, pp. 395–399, 2008.
[14] Lang L., Danckert J., Nielsen KB., Investigation into the effect of pre-bulging during hydromechanical deep drawing with uniform pressure onto the blank. International Journal of Machine Tools & Manufacture, Vol. 44, pp 649–657, 2004.
[15] Hashemi A., Hoseinpour Gollo M., Seyedkashi S.M.H., Bimetal Cup Hydroforming of Al/St and Cu/St Composites: Adaptive Finite Element Analysis and Experimental Study, Journal of Mechanical Science and Technology, Vol. 30 (5), 2016, pp. 2217-2224, 2016.
[16] Rahmani F., Hashemi S.J., Moslemi H., Deylami H., Numerical and Experimental Study of the Efficient Parameters on Hydromechanical Deep Drawingof Square Parts. Journal of Materials Engineering and Performance, Vol. 22, pp. 338-344, 2013.
[17] öndera E., Tekkaya E., Numerical simulation of various cross sectional workpieces using conventional deep drawing and hydroforming technologies. International Journal of Machine Tools & Manufacture, Vol. 48, pp. 532–542, 2008.
[18] Marciniak Z., Duncan JL., Hu SJ., Mechanics of sheet metal forming. Butterworth Heinemann, Oxford, 2002.
[19] Janbakhsh M., Loghmanian S.M.R. and Djavanroodi F., Application of Different Hill’s Yield Criteria to Predict Limit Strains for Aerospace Titanium and Aluminum Sheet Alloys. International Journal of Advanced Design and Manufacturing Technology, Vol. 7, pp. 35-44, 2014.
[20] Banabic, D., Bunge, H.J., Pohlandt, K., Tekkaya, A.E. Formability of metallic materials, Springer Verlag: Berlin, 2000.
[21] ABAQUS 6.12. Documentation, User’s manual, Providence, RI, USA: Dassault Systèmes Simulia Corp., 2012.
[22] Bayraktar E., Isac N. and Arnold G., An experimental study on the forming parameters of deep-drawable steel sheets in automotive industry. Journal of Materials Processing Technology, 162-163 pp 471-476, 2005.
[23] Djavanroodi F., Abbasnejad D. Sh. and Nezami E. H., Deep Drawing of Aluminum Alloys Using a Novel Hydroforming Tooling. Materials and Manufacturing Processes, Vol. 26 (5), pp. 796-801, 2011.
[24] Slota J., Spisak E., Comparison Of The Forming Limit Diagram (Fld) Models For Drawing Quality (Dq) Steel Sheets. Metalurgija, Vol. 44, pp. 249-253, 2005.
[25] Aue-U-Lan Y., Ngaile G., Altan T., Optimizing tube hydroforming using process simulation and experimental verification. Journal of Materials Processing Technology, Vol. 146, pp. 137–143, 2004.