بررسی تغییرات فشار در جریان اینرسی و غیر همدمای سیالات ویسکوالاستیک در کانال صفحه‌ای متقارن با انبساط ناگهانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این تحقیق، جریان اینرسی و غیر همدمای سیال ویسکوالاستیک در کانال صفحه‌ای متقارن با انبساط ناگهانی 1:3 شبیه سازی شده است. برای مدلسازی رفتار رئولوژیکی و پیچیده سیال ویسکوالاستیک، از رابطه‌ی غیر خطی مدل رئولوژیکی فن تین-تنر استفاده شده است. برای تولید جریان غیر همدما، مقادیر دما در ورودی و دیواره‌های کانال ثابت و متفاوت هستند. برای شبیه سازی عددی جریان غیر همدما از الگوریتم PISO استفاده شده و معادلات حاکم توسط روش حجم محدود خطی شده است. همچنین، خواص سیال ویسکوالاستیک تابع دما در نظر گرفته شده و جمله اتلافات ناشی از لزجت در معادله انرژی لحاظ شده است. هدف اصلی این تحقیق، بررسی اثرات خاصیت الاستیک، نیروی اینرسی و اتلافات ناشی از لزجت روی الگوی جریان، تغییرات فشار، ضریب افت فشار و ضریب تلفات برای جریان اینرسی و غیر همدما در بخش انبساطی کانال صفحه‌ای است. نتایج این تحقیق نشان می‌دهد که با افزایش عدد رینولدز در محدوده جریان آرام، الگوی جریان نامتقارنی در بخش انبساطی کانال صفحه‌ای (بر خلاف لوله انبساط ناگهانی) ایجاد می‌شود که نقش عمده‌ای بر توزیع و افت فشار در این بخش دارد.

کلیدواژه‌ها

موضوعات


[1]     Poole R. J., Alves M. A., Oliveira P. J. and Pinho F. T., Plane sudden expansion flows of viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, Vol. 146, No. 1, pp. 79-91, 2007.
[2]     Poole R. J., Pinho F. T., Alves M. A. and Oliveira P. J., The effect of expansion ratio for creeping expansion flows of UCM fluids. Journal of Non-Newtonian Fluid Mechanics, Vol. 163, No. 1, pp. 35-44, 2009.
[3]     Oliveira P. J., Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries. Journal of Non-Newtonian Fluid Mechanics, Vol. 114, No. 1, pp. 33-63, 2003.
[4]     Zheng Z.-Y., Li F.-C. and Yang J.-C., Modeling Asymmetric Flow of Viscoelastic Fluid in Symmetric Planar Sudden Expansion Geometry Based on User-Defined Function in FLUENT CFD Package. Advances in Mechanical Engineering, Vol. 5, pp. 1-13, 2013.
[5]     Norouzi M., Shahmardan M. M. and Shahbani Zahiri A., Bifurcation phenomenon of inertial viscoelastic flow through gradual expansions. Rheologica Acta, Vol. 54, No. 5, pp. 423-435, 2015.
[6]    شاه مردان م. م.، نوروزی م.، حسن زاده ح. و شهبانی ظهیری ا.، تأثیر خاصیت الاستیک و نیروی اینرسی بر طول گردابه‌های موجود در جریان سیال ویسکوالاستیک داخل کانال صفحه‌ای با انبساطی تدریجی. مجله مهندسی مکانیک مدرس، د. 15، ش. 4، ص 281-291، 1394.
[7]     Kfuri S. L., Soares E. J., Thompson R. L. and Siqueira R. N., Friction coefficients for Bingham and Power-law fluids in abrupt contractions and expansions. Journal of Fluids Engineering, Vol. 139, No. 2, pp. 021203, 2017.
[8]     Norouzi M., Shahbani Zahiri A., Shahmardan M. M., Hassanzadeh H. and Talebi Z., A numerical study on pressure losses in asymmetric viscoelastic flow through symmetric planar gradual expansions. European Journal of Mechanics - B/Fluids, Vol. 65, pp. 199-212, 2017.
[9]     Norouzi M., Shahbani Zahiri A., Shahmardan M. M., Hassanzadeh H. and Davoodi M., Investigation of stresses and normal stress differences behavior on symmetric and asymmetric polymeric fluid flow through planar gradual expansions. Meccanica, Vol. 52, No. 8, pp. 1889-1909, 2017.
[10] Vaz Jr M. and Zdanski P. S. B., A fully implicit finite difference scheme for velocity and temperature coupled solutions of polymer melt flow. Communications in Numerical Methods in Engineering, Vol. 23, No. 4, pp. 285-294, 2007.
[11] Zdanski P. S. B. and Vaz Jr M., Non-isothermal polymer melt flow in sudden expansions. Journal of Non-Newtonian Fluid Mechanics, Vol. 161, No. 1, pp. 42-47, 2009.
[12]  منتهایی ع.، شاه مردان م. م. و نوروزی م.، شبیه‌سازی عددی جریان و انتقال حرارت خواص وابسته به دمای سیال ویسکوالاستیک در تبدیل واگرای متقارن محوری. مجله مهندسی مکانیک مدرس، د. 16،ش. 12، ص 39-49، 1395.
[13]  شهبانی ظهیری ا.، حسن زاده ح.، شاه مردان م. م. و نوروزی م.، بررسی اثرات نیروی اینرسی روی انتقال حرارت جریان سیال ویسکوالاستیک داخل کانال صفحه‌ای واگرا با انبساط ناگهانی متقارن. مجله مهندسی مکانیک مدرس، د. 17، ش. 6، ص 139-148، 1396.
[14] Shahbani-Zahiri A., Hassanzadeh H., Shahmardan M. M. and Norouzi M., Investigation of pitchfork bifurcation phenomena effects on heat transfer of viscoelastic flow inside a symmetric sudden expansion. Physics of Fluids, Vol. 29, No. 11, pp. 1-16, 2017.
[15] Nóbrega J. M., Pinho F. T., Oliveira P. J. and Carneiro O. S., Accounting for temperature-dependent properties in viscoelastic duct flows. International Journal of Heat and Mass Transfer, Vol. 47, No. 6, pp. 1141-1158, 2004.
[16] Peters G. W. M., Schoonen J. F. M., Baaijens F. P. and Meijer H. E. H., On the performance of enhanced constitutive models for polymer melts in a cross-slot flow. Journal of Non-Newtonian Fluid Mechanics, Vol. 82, No. 2, pp. 387-427, 1999.
[17] Quinzani L. M., Armstrong R. C. and Brown R. A., Use of coupled birefringence and LDV studies of flow through a planar contraction to test constitutive equations for concentrated polymer solutions. Journal of Rheology, Vol. 39, No. 6, pp. 1201-1228, 1995.
[18] Phan-Thien N. and Tanner R. I., A new constitutive equation derived from network theory. Journal of Non-Newtonian Fluid Mechanics, Vol. 2, No. 4, pp. 353-365, 1977.
[19] Phan‐Thien N., A nonlinear network viscoelastic model. Journal of Rheology, Vol. 22, No. 3, pp. 259-283, 1978.
[20] Bird R. B. and Wiest J. M., Constitutive equations for polymeric liquids. Annual Review of Fluid Mechanics, Vol. 27, No. 1, pp. 169-193, 1995.
[21] Alves M. A., Pinho F. T. and Oliveira P. J., Viscoelastic flow in a 3D square/square contraction: visualizations and simulations. Journal of Rheology, Vol. 52, No. 6, pp. 1347-1368, 2008.
[22] Cruz D. O. A. and Pinho F. T., Fully-developed pipe and planar flows of multimode viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, Vol. 141, No. 2, pp. 85-98, 2007.
[23] Bird R. B., Armstrong R. C. and Hassager O., Dynamics of polymeric liquids: Fluid mechanics. Second ed.: New York: John Wiley and Sons Inc., 1987.
[24] Mark J. E., Physical properties of polymers handbook, New York: American Institute of Physics, 1996.
[25] Oliveira P. J., Pinho F. T. and Pinto G. A., Numerical simulation of non-linear elastic flows with a general collocated finite-volume method. Journal of Non-Newtonian Fluid Mechanics, Vol. 79, No. 1, pp. 1-43, 1998.
[26] Favero J. L., Secchi A. R., Cardozo N. S. M. and Jasak H., Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. Journal of Non-Newtonian Fluid Mechanics, Vol. 165, No. 23, pp. 1625-1636, 2010.
[27] Patankar S. V. and Spalding D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, Vol. 15, No. 10, pp. 1787-1806, 1972.
[28] Ajiz M. A. and Jennings A., A robust incomplete Choleski‐conjugate gradient algorithm. International Journal for Numerical Methods in Engineering, Vol. 20, No. 5, pp. 949-966, 1984.
[29] Lee J., Yoon S., Kwon Y. and Kim S., Practical comparison of differential viscoelastic constitutive equations in finite element analysis of planar 4: 1 contraction flow. Rheologica Acta, Vol. 44, No. 2, pp. 188-197, 2004.
[30] Versteeg H. K. and Malalasekera W., An introduction to computational fluid dynamics: the finite volume method. Second ed., Harlow, United Kingdom: Pearson Education Limited, 2007.
[31] Coelho P. M., Pinho F. T. and Oliveira P. J., Fully developed forced convection of the Phan-Thien–Tanner fluid in ducts with a constant wall temperature. International Journal of Heat and Mass Transfer, Vol. 45, No. 7, pp. 1413-1423, 2002.
[32] Fearn R. M., Mullin T. and Cliffe K. A., Nonlinear flow phenomena in a symmetric sudden expansion. Journal of Fluid Mechanics, Vol. 211, pp. 595-608, 2006.