[1] Xu C., Wang Z., Li X., Sun F., Energy and exergy analysis of solar power tower plants, Appl. Therm. Eng., 31, pp. 3904–3913, 2011.
[2] Siva Reddy V., Kaushik SC., Ranjan KR., Tyagi SK., State-of-the-art of solar thermal power plants - A review, Renew. Sustain. Energy Rev., 27, pp. 258–273, 2013.
[3] Spelling J., Thermo-Economic Optimisation of Solar Tower Thermal Power Plants, ECOS Conf., 5648, pp. 1–171, 2013.
[4] Kalogirou SA., Solar Energy Engineering Processes and Systems, Cyprus University of Technology, 2009.
[5] Behar O., Khellaf A., Mohammedi K., A review of studies on central receiver solar thermal power plants, Renew. Sustain. Energy Rev., 23, pp. 12–39, 2013.
[6] Pacio J., Wetzel T., Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems, Sol. Energy, 93, pp. 11–22, 2013.
[7] Boerema N., Morrison G., Taylor R., Rosengarten G., Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems, Sol. Energy, 86, pp. 2293–2305, 2012.
[8] Buck R., Barth C., Eck M., Steinmann WD., Dual-receiver concept for solar towers, Sol. Energy, 80, pp. 1249–54, 2006.
[9] Chacartegui R., Muñoz De Escalona JM., Sánchez D., Monje B., Sánchez T., Alternative cycles based on carbon dioxide for central receiver solar power plants, Appl. Therm. Eng., 31, pp. 872–879, 2011.
[10] Spelling J., Favrat D., Martin A., Augsburger G., Thermoeconomic optimization of a combined-cycle solar tower power plant, Energy, 41, pp. 113–120, 2012.
[11] Spelling J., Laumert B., Fransson T., Advanced hybrid solar tower combined-cycle power plants, Energy Procedia, 49, 1207–1217, 2013.
[12] Iverson BD., Conboy TM., Pasch JJ., Kruizenga AM., Supercritical CO2 Brayton cycles for solar-thermal energy, Appl. Energy, 111, pp. 957–970, 2013.
[13] Pacio J., Singer C., Wetzel T., Uhlig R., Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants, Appl. Therm. Eng., 60, pp. 295–302, 2013.
[14] Reddy VS., Kaushik SC., Tyagi SK., Exergetic analysis and economic evaluation of central tower receiver solar thermal power plant, Int. J. of Energy Res., 38, pp. 1288–1303 2014.
[15] Modi A., Haglind F., Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation, Appl. Therm. Eng., 65, pp. 201–208, 2014.
[16] Al-Sulaiman FA., Atif M., Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower, Energy, 82, pp. 61–71, 2015.
[17] Osorio JD., Hovsapian R., Ordonez JC., Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle, Appl. Therm. Eng., 93, pp. 920–934, 2016.
[18] N’Tsoukpoe KE., Azoumah KY., Ramde E., Fiagbe AKY., Neveu P, Integrated design and construction of a micro-central tower power plant, Energy Sustain. Dev., 31, pp. 1–13, 2016.
[19] AlZahrani AA., Dincer I., Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production, Int. J. Hydrogen Energy, 41, pp. 8042–8056, 2016.
[20] Romero M., González-Aguilar J., Solar thermal CSP technology, Rev. Energy Environ., 3, pp. 42–59, 2014.
[21] Besarati SM., Goswami DY., A computationally efficient method for the design of the heliostat field for solar power tower plant, Renew. Energy, 69, pp. 226–232, 2014.
[22] Yari M., Mahmoudi SMS, Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles, Appl. Therm. Eng., 30, pp. 366–375, 2010.
[23] Yari M., Mehr AS., Zare V., Mahmoudi SMS., Rosen MA., Exergoeconomic comparison of TLC ( trilateral Rankine cycle ), ORC ( organic Rankine cycle ) and Kalina cycle using a low grade heat source, Energy, 83, 712–722, 2015.
[24] Hoffschmidt B., Receivers for Solar Tower Systems, 2014.
[25] Ávila-Marín AL., Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review, Sol. Energy, 85, 5, pp. 891–910, 2011.