بررسی تاثیر پارامترهای موثر بر الگوی قرارگیری بهینه عملگرهای پیزوالکتریک در کاهش تمرکز تنش با استفاده از الگوریتم پرندگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد نجف آباد، نجف آباد، ایران

2 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

در این مقاله به بررسی پارامترهای موثر بر الگوی بهینه قرارگیری عملگرهای پیزوالکتریک در اطراف یک سوراخ در یک صفحه تحت کشش به منظور کاهش تمرکز تنش پرداخته شده است. بدین منظور، یک نسبت سفتی که در آن پارامترهای موثر بر جایابی عملگرهای پیزوالکتریک در اطراف سوراخ نشان داده ارائه شده است. در این نسبت سفتی، چهار پارامتر مدول الاستیسیته، ضخامت ورق، ضخامت پیزوالکتریک­ها و ولتاژ اعمالی به عملگرهای پیزوالکتریک­ به عنوان پارامترهای موثر بر جایابی عملگرها در اطراف سوراخ معرفی شده است. برای بررسی جایابی بهینه عملگرهای پیزوالکتریک از الگوریتم بهینه سازی پرندگان استفاده شده است. سپس با استفاده از الگوریتم بهینه سازی پرندگان یک کد پایتون برای مشخص کردن بهترین الگو برای تحریک در اطراف سوراخ برای تاثیر پارامترهای مختلف نوشته شده است. با استفاده از الگوریتم بهینه سازی پرندگان، منطقه و بهترین محل تکه های پیزوالکتریک مورد بررسی قرارگرفته و الگوی بهینه از محل قرارگیری عملگرهای پیزوالکتریک در اطراف سوراخ ارائه شده است. پس از آن تاثیر افزایش مساحت تکه های پیزوالکتریک در کاهش ضریب تمرکز تنش در درصدهای مختلف تکه­های پیزوالکتریک بررسی شده است. برای تجزیه و تحلیل نتایج بدست آمده از حل المان محدود، نتایج با آزمایش­های تجربی مقایسه شده است.

کلیدواژه‌ها

موضوعات


[1]  Frecker M. I., Recent advances in optimization of smart structures and actuators, Journal of Intelligent Material Systems and Structures, Vol. 14, No. 4-5, pp. 207-216, 2003.
[2]  Gupta V., Sharma M., Thakur N., Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review, Journal of Intelligent Material Systems and Structures, Vol. 21, No. 12, pp. 1227-1243, 2010.
[3]  Anton S. R., Sodano H. A., A review of power harvesting using piezoelectric materials (2003–2006),
Smart materials and Structures, Vol. 16, No. 3, pp. R1, 2007.
[4]  Tao W., Shaopeng L., Junhua S., Yourong L., Health monitoring of bolted joints using the time reversal method and piezoelectric transducers, Smart Materials and Structures, Vol. 25, No. 2, pp. 025010, 2016.
[5]  Fey T., Eichhorn F., Han G., Ebert K., Wegener M., Roosen A., Kakimoto K.-i., Greil P., Mechanical and electrical strain response
       of a piezoelectric auxetic PZT lattice structure, Smart Materials and Structures, Vol. 25, No. 1, pp. 015017, 2015.
[6]  Mehrabian A. R., Yousefi-Koma A., A novel technique for optimal placement of piezoelectric actuators on smart structures, Journal of the Franklin Institute, Vol. 348, No. 1, pp. 12-23, 2011.
[7]  Yang Y., Wu H., Soh C. K., Experiment and modeling of a two-dimensional piezoelectric energy harvester, Smart Materials and Structures, Vol. 24, No. 12, pp. 125011, 2015.
[8]  Wu N., Wang Q., An experimental study on the repair of a notched beam subjected to dynamic loading with piezoelectric patches, Smart Materials and Structures, Vol. 20, No. 11, pp. 115023, 2011.
[9]  Wang Q., Quek S., Liew K., On the repair of a cracked beam with a piezoelectric patch, Smart materials and structures, Vol. 11, No. 3, pp. 404, 2002.
[10]                                                                                                        Wang Q., Duan W., Quek S. T., Repair of notched beam under dynamic load using piezoelectric patch, International journal of mechanical sciences, Vol. 46, No. 10, pp. 1517-1533, 2004.
[11] Zhang X., Kang Z., Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control, Smart Materials and Structures, Vol. 24, No. 8, pp. 085024, 2015.
[12] Kharroub S., Laflamme S., Song C., Qiao D., Phares B., Li J., Smart sensing skin for detection and localization of fatigue cracks, Smart Materials and Structures, Vol. 24, No. 6, pp. 065004, 2015.  
[13] Wang Q., On buckling of column structures with a pair of piezoelectric layers, Engineering structures, Vol. 24, No. 2, pp. 199-205, 2002.
[14] Chase J. G., Bhashyam S., Optimal stabilization of plate buckling, Smart materials and structures, Vol. 8, No. 2, pp. 204, 1999.
[15]                                                                                                        Correia V. M. F., Soares C. M. M., Soares C. A. M., Buckling optimization of composite laminated adaptive structures, Composite Structures, Vol. 62, No. 3, pp. 315-321, 2003.
[16]                                                                                                        Chee C., Tong L., Steven G., Static shape control of composite plates using a curvature–displacement based algorithm, International journal of solids and structures, Vol. 38, No. 36, pp. 6381-6403, 2001.
[17]                                                                                                        Austin F., Rossi M. J., Van Nostrand W., Knowles G., Jameson A., Static shape control for adaptive wings, AIAA journal, Vol. 32, No. 9, pp. 1895-1901, 1994.
[18]                                                                                                        Soares C. M. M., Soares C. A. M., Correia V. M. F., Optimal design of piezolaminated structures, Composite Structures, Vol. 47, No. 1, pp. 625-634, 1999.
[19]                                                                                                        Mukherjee A., Joshi S., Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates, AIAA journal, Vol. 40, No. 6, pp. 1204-1210, 2002.
[20]                                                                                                        Chen W.-m., Wang D.-j., Li M., Static shape control employing displacement–stress dual criteria, Smart materials and Structures, Vol. 13, No. 3, pp. 468, 2004.
[21]                                                                                                        Luo Q., Tong L., High precision shape control of plates using orthotropic piezoelectric actuators, Finite elements in analysis and design, Vol. 42, No. 11, pp. 1009-1020, 2006.
[22]                                                                                                        Sensharma P. K., Palantera M. J., Haftka R. T., Stress reduction in an isotropic plate with a hole by applied induced strains, Journal of intelligent material systems and structures, Vol. 4, No. 4, pp. 509-518, 1993.
[23]                                                                                                        Shah D., Chan W., Joshi S., Delamination detection and suppression in a composite laminate using piezoceramic layers, Smart materials and Structures, Vol. 3, No. 3, pp. 293, 1994.
[24]                                                                                                        Shah D., Joshi S., Chan W., Static structural response of plates with piezoceramic layers, Smart Materials and Structures, Vol. 2, No. 3, pp. 172, 1993.
[25] Fesharaki J. J., Optimum pattern of piezoelectric actuator placement for stress concentration reduction in a plate with a hole using particle swarm optimization algorithm, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp. 0954406214538617, 2014.
[26] Eberhart R. C., Kennedy J., A new optimizer using particle swarm theory, in Proceeding of, New York, Vol. 43, No. 3, pp. 39-43, 1995.
[27] Rao S. S., Rao S., Engineering optimization: theory and practice: John Wiley & Sons, pp. 725-731, 2009.