مطالعه عددی تاثیر تزریق دی‌اکسید کربن درون اکسید کننده در احتراق متان- اکسیژن بدون شعله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

چکیده

هدف از مطالعه حاضر بررسی عددی تاثیر تزریق دی‎اکسید کربن بر احتراق متان- اکسیژن بدون شعله می‌باشد. بدین‌منظور رژیم‌های مختلف تشکیل شده در احتراق متان- اکسیژن، توزیع دما و نرخ آزادسازی حرارت در مقادیر مختلف تزریق دی‌اکسید کربن، حداقل مقدار CO2 مورد نیاز برای تزریق درون اکسیدکننده جهت دست‌یابی به احتراق متان- اکسیژن بدون شعله و بیشینه مقدار دی‌اکسید کربن قابل تزریق درون اکسیدکننده مورد بررسی قرار گرفته‌است. از حلگر شعله نفوذی جریان متقابل به‌منظور انجام شبیه‌سازی‌ها استفاده شده است. به‌منظور ارائه نتایج از حالتی مبنا با دمای پیش‌گرمایش 1400 کلوین استفاده شده است. نتایج بدست آمده نشان می‌دهند که تزریق CO2درون اکسیدکننده منجر به کاهش دمای بیشینه و متوسط احتراقی می‌گردد. در مقادیر تزریق بالاتر از 80 درصد کسر مولی اکسیدکننده، این تزریق سبب می‌شود تا از بیشینه و متوسط دمایی نسبت به احتراق سوخت- هوا با تزریق نیتروژن داخل اکسیدکننده آن، کاسته شود. علاوه‌بر این نتایج نشان‌دهنده آن است که تا قبل از دست‌یابی به احتراق بدون شعله، میزان بیشینه دی‌اکسید کربن قابل تزریق درون اکسیدکننده مقداری ثابت داشته و با افزایش دمای پیش‌گرمایش تغییر نمی‌کند.

کلیدواژه‌ها

موضوعات


[1] Bouzalakos S., Maroto-Valer M., Overview of carbon dioxide (CO2) capture and storage technology, Development and innovation in carbon dioxide (CO2) capture and storage technology, Vol. 2, pp. 1-24, 2010.
[2] Maroto-Valer M. M., Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology: Carbon Dioxide (CO2) Storage and Utilisation: Elsevier, 2010.
[3] Cavaliere A., de Joannon M., Mild combustion, Progress in Energy and Combustion science, Vol. 30, No. 4, pp. 329-366, 2004.
[4] Li P., Dally B. B., Mi J., Wang F., MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace, Combustion and Flame, Vol. 160, No. 5, pp. 933-946, 2013.
[5] Li P., Mi J., Dally B., Wang F., Wang L., Liu Z., Chen S., Zheng C., Progress and recent trend in MILD combustion, Science China Technological Sciences, Vol. 54, No. 2, pp. 255-269, 2011.
[6] Dally B. B., Riesmeier E., Peters N., Effect of fuel mixture on moderate and intense low oxygen dilution combustion, Combustion and flame, Vol. 137, No. 4, pp. 418-431, 2004.
[7] Li P., Mi J., Dally B. B., Craig R. A., Wang F., Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace, Energy & Fuels, Vol. 25, No. 7, pp. 2782-2793, 2011.
[8] Lille S., Blasiak W., Jewartowski M., Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases, Energy, Vol. 30, No. 2, pp. 373-384, 2005.
[9] De Joannon M., Sabia P., Sorrentino G., Cavaliere A., Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime, Proceedings of the Combustion Institute, Vol. 32, No. 2, pp. 3147-3154, 2009.
[10] Seepana S., Jayanti S., Flame structure investigations of oxy-fuel combustion, Fuel, Vol. 93, pp. 52-58, 2012.
[11] S. Chen, C. Zheng, Counterflow diffusion flame of hydrogen-enriched biogas under MILD oxy-fuel condition, International journal of hydrogen energy, Vol. 36, No. 23, pp. 15403-15413, 2011.
[12] M. De Joannon, P. Sabia, G. Cozzolino, G. Sorrentino, A. Cavaliere, Pyrolitic and oxidative structures in hot oxidant diluted oxidant (HODO) MILD combustion, Combustion Science and Technology, Vol. 184, No. 7-8, pp. 1207-1218, 2012.
[13] De Joannon M., Sorrentino G., Cavaliere A., MILD combustion in diffusion-controlled regimes of hot diluted fuel, Combustion and Flame, Vol. 159, No. 5, pp. 1832-1839, 2012.
[14] Song Y., Zou C., He Y., Zheng C., The chemical mechanism of the effect of CO 2 on the temperature in methane oxy-fuel combustion, International Journal of Heat and Mass Transfer, Vol. 86, pp. 622-628, 2015.
[15] P. Sabia, G. Sorrentino, A. Chinnici, A. Cavaliere, R. Ragucci, Dynamic behaviors in methane MILD and oxy-fuel combustion. Chemical effect of CO2, Energy & Fuels, Vol. 29, No. 3, pp. 1978-1986, 2015.
[16] Kwiatkowski K., Mastorakos E., Regimes of Nonpremixed Combustion of Hot Low-Calorific-Value Gases Derived from Biomass Gasification, Energy & Fuels, 2016.
[17] Abdelbaki M., Tabet F., Hadef A., MILD combustion of hydrogenated biogas under several operating conditions in an opposed jet configuration, International Journal of Hydrogen Energy, 2017.
[18] Cheong KP., Li P., Wang F., Mi J., Emissions of NO and CO from counter flow combustion of CH 4 under MILD and oxy fuel conditions, Energy, Vol. 124, pp. 652-664, 2017.
[19] E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. Kelley, C. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Progress in Energy and Combustion Science, Vol. 38, No. 4, pp. 468-501, 2012.
[20] de Joannon M., Sabia P., Tregrossi A., Cavaliere A., Periodic regimes in low molecular weight paraffin oxidation, in Proceeding of.
[21] Sabia P., de Joannon M., Picarelli A., Chinnici A., Ragucci R., Modeling Negative Temperature Coefficient region in methane oxidation, Fuel, Vol. 91, No. 1, pp. 238-245, 2012.
[22] Cheng Z., Wehrmeyer J. A., Pitz R. W., Experimental and numerical studies of opposed jet oxygen-enhanced methane diffusion flames, Combustion science and technology, Vol. 178, No. 12, pp. 2145-2163, 2006.
[23] Peters N., Combustion theory, CEFRC Summer school, Princeton, June 28th–July 2nd, 2010.
[24] Sorrentino G., Characterization of advected-surfaces. The sinews of a “MultiSECtioning” approach for non-premixed combustion, 2013.