مطالعه عددی آیرودینامیک شعله در کوره‌های دوار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

3 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

چکیده

عملکرد کوره‌های دوار ساده نبوده و برخی مشکلات به دلیل عدم توجه به هماهنگی و سازگاری میان مشعل و کوره در آن وجود دارد. بر این اساس در کار حاضر به مطالعه رفتار شعله در حضور جریان هوای ثانویه پرداخته شده است. با توجه به نبود داده­های آزمایشگاهی در زمینه کوره­های دوار، در گام اول مدل­های مناسب براساس مسئله معیار اعتبارسنجی شده­اند. سپس شبیه‌سازی کوره دوار با استفاده مدل توربولانسی realizable k-ε، مدل احتراقی واکنش گاه نیمه مخلوط، مدل تابشی P1با استفاده از نرم‌افزار اپن‌فوم انجام گرفته است. همچنین در کار حاضر با افزودن جمله چشمه به معادله انرژی قابلیت اعمال تابش و با افزودن جمله چشمه به معادله مومنتم قابلیت اعمال شرط مرزی دورانی به حلگر Reacting FOAM اضافه شده است. مطابق نتایج بدست آمده اعمال گرانش در شبیه‌سازی منجر به انحراف شعله به سمت دیواره بالایی کوره می‌شود. همچنین نتایج نشان‌دهنده اهمیت بالای تابش در شرایط حاکم بر مسئله مورد مطالعه است. بررسی تأثیر میزان هوای اضافی بر روی دمانیز نشان­دهنده کاهش دمای کوره و بیشینه دمایی دیواره کوره با افزایش درصد هوای اضافی می­باشد.

کلیدواژه‌ها

موضوعات


[1]      Boateng A. A., Rotary kilns: transport phenomena and transport processes: Butterworth-Heinemann, 2015.
[2]     Elatta H.r, Specht E., Fouda, A. S. Bin-Mahfouz, CFD modeling using PDF approach for investigating the flame length in rotary kilns, Heat and Mass Transfer, Vol. 52, No. 12, pp. 2635-2648, 2016.
[3]     Peray, Kurt E., and Joseph J. Waddell. The rotary cement kiln. Vol. 139. Edward Arnold, 1986.
[4]     Elattar H., Stanev R., Specht E., Fouda A., CFD simulation of confined non-premixed jet flames in rotary kilns for gaseous fuels, Computers & Fluids, Vol. 102, pp. 62-73, 2014.
[5]     Jenkins B., Mullinger P., Industrial and process furnaces: principles, design and operation: Butterworth-Heinemann, 2011.
[6]     Alyaser A. H., Fluid flow and combustion in rotary kiln,  Thesis, University of British Columbia, 1998.
[7]     Mastorakos E., Massias A., Tsakiroglou C., Goussis D., Burganos V., Payatakes A., CFD predictions for cement kilns including flame modelling, heat transfer and clinker chemistry, Applied Mathematical Modelling, Vol. 23, No. 1, pp. 55-76, 1999.
[8]     Mujumdar K. S., Ranade V. V., CFD modeling of rotary cement kilns, Asia‐Pacific Journal of Chemical Engineering, Vol. 3, No. 2, pp. 106-118, 2008.
[9]     Liu X. Y., Specht E., Temperature distribution within the moving bed of rotary kilns: Measurement and analysis, Chemical Engineering and Processing: Process Intensification, Vol. 49, No. 2, pp. 147-150, 2010.
[10]  Macphee J., Sellier M., Jermy M., Tadulan E., Combustion modelling of a rotary limekiln, Progress in Computational Fluid Dynamics, an International Journal, Vol. 10, No. 5-6, pp. 384-393, 2010.
[11]  Li G., Liu J., Xiong H., Kong J.,. Gao Z, Xiao W., Zhang Y., Cheng F., Numerical Simulation of Airflow Temperature Field in Rotary Kiln, Sensors & Transducers, Vol. 161, No. 12, pp. 271, 2013.
[12]  Rahimpour M., Mazaheri K., Seyedein S. H., Numerical Study of the Effect of Burner Angle on Melting Rate in an Aluminum Rotary Furnace, Modares Mechanical Engineering, Vol. 14, No. 16, 2015.
[13]  Elattar H. F., Specht E., Fouda A., Bin‐Mahfouz A. S., Study of parameters influencing fluid flow and wall hot spots in rotary kilns using CFD, The Canadian Journal of Chemical Engineering, Vol. 94, No. 2, pp. 355-367, 2016.
[14]  Spadaccini L. J., Owen F. K., Bowman C. T., Influence of aerodynamic phenomena on pollutant formation in combustion: Environmental Protection Agency, Office of Research and Development, 1979.
[15]  Pierce C. D., Progress-variable approach for large-eddy simulation of turbulent combustion,  Thesis, stanford university, 2001.
[16]  Davies P. R., Norton M. J., Wilson D. I., Davidson J. F., Scott D. M., Gas flow in rotary kilns, Particuology, Vol. 8, No. 6, pp. 613-616, 2010.
[17]  Poinsot T., Veynante D., Theoretical and numerical combustion: RT Edwards, Inc., 2005.
[18]  Gutierrez L., Tamagno J. P., Elaskar S. A., RANS Simulation of Turbulent Diffusive Combustion using Open Foam, JOURNAL OF APPLIED FLUID MECHANICS, Vol. 9, No. 2, pp. 669-682, 2016.
[19]  Nejad M. S., Fundamental of Turbulent Flowsand Turbulence Modeling: daneshnegar, 2009 (in Persian).
[20]  Heidarinejad G., An Introduction to Turbulence: Tarbiat Modares University, 2008(in Persian).
[22]  Correa S. M., Turbulence-chemistry interactions in the intermediate regime of premixed combustion, Combustion and Flame, Vol. 93, No. 1-2, pp. 41-60, 1993.
[23]  Chen J.-Y., Stochastic modeling of partially stirred reactors, Combustion Science and Technology, Vol. 122, No. 1-6, pp. 63-94, 1997.
[24]  Chen J., Development of reduced mechanisms for numerical modelling of turbulent combustion, in Proceeding of.
[25]  Chomiak J., Karlsson A., Flame liftoff in diesel sprays, in Proceeding of, Elsevier, pp. 2557-2564.
[26]  Nordin P., Complex chemistry modeling of diesel spray combustion: Chalmers University of Technology, 2001.
[27]  Golovitchev V., Chomiak J., Numerical Modeling of high Temperature Air ‘Flameless Combustion,’ in Proceeding of, 27-30.
[28]  Guessable A., Airs A., I. Go alp, Heal F. T., RANS Simulation of Methane Diffusion Flame: Comparison of Two Chemical Kinetics Mechanisms: Comparison of Two Chemical Kinetics Mechanisms, Journal of Physical Science and Application, Vol. 3, No. 6, pp. 400-408, 2013.
[29]  Modest M. F., Radiative heat transfer: Academic press, 2013.
[30]  Kadar A. H., Modelling Turbulent Non-Premixed Combustion in Industrial Furnaces, 2015.
[31]  https://www.sharcnet.ca/Software/Fluent6/html/ug/node416.htm#sec-rotate-equations, Accessed(2016/09/21).
[32] Ghasemi E., Soleimani S., Lin C., RANS simulation of methane-air burner using local extinction approach within eddy dissipation concept by OpenFOAM, International Communications in Heat and Mass Transfer, Vol. 54, pp. 96-102, 2014.