آنالیز عملکردی پیش‌ران الکتروآیرودینامیک با سامانه‌های پیشران متداول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی‌ارشد، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

2 استادیار، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

3 دانشیار، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک‌اشتر، تهران، ایران

چکیده

در این پژوهش، عملکرد سامانه پیش‌ران الکتروآیرودینامیک (EAD) در مقایسه با سامانه‌های پیش‌ران متداول شامل توربوجت، توربوفن، توربوپراپ و موتور الکتریکی در شرایط مختلف پروازی شامل سرعت و ارتفاعات مختلف موردبررسی قرار گرفته است. ابتدا، مروری بر اصول عملکرد، مزایا و چالش‌های سامانه پیش‌ران الکتروآیرودینامیک ارائه شده و سپس پژوهش‌های پیشین در این حوزه تحلیل شده‌اند. در ادامه، مدل­سازی و شبیه‌سازی عملکرد این سامانه‌ها در مواجهه با تغییرات سرعت و ارتفاع انجام شده است. با استفاده از نتایج حاصل از مدل­سازی و تحلیل نمودارهای به‌دست‌آمده، مشخص شد که هرچند راندمان سامانه پیش‌ران الکتروآیرودینامیک در سرعت‌های بالا به طور قابل‌توجهی کاهش می‌یابد، اما افزایش ارتفاع تأثیر کمتری بر عملکرد آن در مقایسه با سایر موتورهای هوایی دارد. این ویژگی نشان‌دهنده پتانسیل بالای این سامانه در مأموریت‌های پروازی در ارتفاعات زیاد است. یافته‌های این پژوهش می‌توانند در توسعه و بهینه‌سازی سامانه‌های پیش‌ران نوین، به‌ویژه در حوزه هوافضا و پروازهای بلندمدت در جو فوقانی، مورداستفاده قرار گیرند.

کلیدواژه‌ها

موضوعات


[1] Vega NG. Advances in electroaerodynamic thrusters for aircraft propulsion [dissertation]. Cambridge (MA): Massachusetts Institute of Technology; 2023.               
[2] Estahbanati S, Schichler U, editors. Beneficial electrode arrangement for electroaerodynamic propulsion. In: Proceedings of the 22nd International Symposium on High Voltage Engineering (ISH 2021); 2021 Nov 21-26; Xi'an, China.
[3] Xu H. Experiments in electroaerodynamic propulsion [dissertation]. Cambridge (MA): Massachusetts Institute of Technology; 2020.           
[4] Gilmore CK, Barrett SRH. Electroaerodynamic thruster performance as a function of altitude and flight speed. AIAA J. 2018;56(3):1105-17.
[5] He Y, Woolston M, Perreault D, editors. Design and implementation of a lightweight high-voltage power converter for electro-aerodynamic propulsion. In: 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL); 2017 Jul 9-12; Stanford, CA, USA.               
[6  ] Xu H, He Y, Strobel KL, Gilmore CK, Kelley SP, Hennick CC, et al. Flight of an aeroplane with solid-state propulsion. Nature. 2018;563(7732):532-5.               
[7 ] Xu H, Gomez-Vega N, Agrawal DR, Barrett SRH. Higher thrust-to-power with large electrode gap spacing electroaerodynamic devices for aircraft propulsion. J Phys D Appl Phys. 2020;53(2):025202.           
[8] Gomez-Vega N, Xu H, Abel JM, Barrett SRH. Performance of decoupled electroaerodynamic thrusters. Appl Phys Lett. 2021;118(7):074102.              
[9] Khomich VY, Malanichev VE, Rebrov IE. Electrohydrodynamic thruster for near-space applications. Acta Astronaut. 2021;180:141-8.
[10] He Z, Li P, Wang W, Shao L, Chen X. Design of indoor unmanned airship propelled by ionic wind. J Phys Conf Ser. 2021;1748:062011.
[11] Barrett S, Brown A, Gomez-Vega N. Silent, solid-state propulsion for advanced air mobility vehicles. 2023.
[12] Nelson CL, Drew DS. High aspect ratio multi-stage ducted electroaerodynamic thrusters for micro air vehicle propulsion. IEEE Robot Autom Lett. 2024;9(3):2702-9.  
[13] Rushikesh P, Jain P, Singh Gill H. Design and optimization of ion propulsion drone. BOHR Int J Mater Sci Eng. 2023;1(1):25-31.
[14] Gomez-Vega N, Brown A, Xu H, Barrett SRH. Model of multistaged ducted thrusters for high-thrust-density electroaerodynamic propulsion. AIAA J. 2023;61(2):767-79.
[15] Brown AJ, Gomez-Vega N, Barrett S, editors. Solid-state electroaerodynamic uncrewed aircraft for near-silent package delivery. In: AIAA Aviation 2023 Forum; 2023 Jun 12-16; San Diego, CA, USA.       
[16] Ahmadi A, Nosratollahi M, Khoshkhoo R, Fathi A. Introducing design algorithm and sensitivity analysis on system parameters of electrohydrodynamic thruster. In: Proceedings of the 7th International Conference on Mechanical Engineering, Industries & Aerospace; 2024.     
[17] Khoshkhoo R, Memari MJ, Aghaei Malekabadi M. Experimental investigation of the thrust and ion wind velocity using corona discharge in different arrangements in positive and negative coronas. Mech Eng Tabriz Univ. 2024;54(1):91-100.
[18] El-Sayed AF. Aircraft propulsion and gas turbine engines. 2nd ed. Boca Raton (FL): CRC Press, Taylor & Francis Group; 2017.
[19] Wikipedia. "Turbojet." https://simple.wikipedia.org/wiki/Turbojet (accessed 11/8/2025).
[20] Anderson JD. Aircraft performance & design. Boston (MA): McGraw-Hill Education; 1999.
[21] Wikipedia. "Turbojet." https://commons.wikimedia.org/wiki/File:Turbofan_operation.svg  (accessed 11/8/2025).
[22]  Wikipedia. " Turboprop." https://en.wikipedia.org/wiki/Turboprop (accessed 11/8/2025).
[23]  Anderson JD. Introduction to flight. 7th ed. Boston (MA): McGraw-Hill Higher Education; 2005.
 [24] E.-R. A. University. "Electrically-Powered Aircraft." https://eaglepubs.erau.edu/introductiontoaerospaceflightvehicles/chapter/electric-aircraft/ (accessed 11/8/2025).             
[25] Brown A. Towards practical fixed-wing aircraft with electroaerodynamic propulsion [dissertation]. Cambridge (MA): Massachusetts Institute of Technology; 2023.