مطالعه عددی جداسازی آمینواسیدهای آرژنین و لیزین در یک میکروکانال بر مبنای روش دی‌الکتروفورسیس با استفاده از الکترودهای عرضی مورب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

چکیده

این تحقیق، به مطالعه عددی و بهینه‌سازی جداسازی دو آمینواسید ضروری آرژنین و لیزین در یک میکروکانال مبتنی بر پدیده دی‌الکتروفورسیس با استفاده از آرایش الکترود‌های مورب می‌پردازد. شبیه‌سازی دو‌بعدی با نرم‌افزار COMSOL و با درنظرگرفتن فیزیک‌های الکترواستاتیک، جریان لایه‌ای و ردیابی ذرات انجام شده است. الکترودهای مورب در کف کانال قرار گرفته و با اعمال میدان الکتریکی غیریکنواخت، باعث انحراف ذرات در داخل میکروکانال و در نتیجه جداسازی آنها می‌شوند. پارامترهای کلیدی شامل ولتاژ اعمالی، فرکانس میدان الکتریکی، عدد رینولدز جریان و هندسه الکترودها می‌باشند. نتایج نشان می‌دهد که فرکانس میدان، نقش تعیین‌کننده‌ای در القای نیروی دی‌الکتروفورسیس دارد که از طریق فاکتور کلوزیوس- موسوتی قابل تبیین است. در فرکانس بهینه ۳۱۵۰ مگاهرتز، اختلاف قابل ‌ملاحظه‌ای در علامت این فاکتور برای دو آمینواسید مشاهده گردید. در این فرکانس و تحت ولتاژ ۱۳ ولت، ذرات آرژنین و لیزین با دقت ۹۷٪ ازیکدیگر جدا شدند. در نهایت، این مطالعه کارایی بالا و پتانسیل کاربردی روش دی‌الکتروفورسیس با الکترودهای مورب را برای جداسازی با دقت بالا و غیر‌تهاجمی ذرات زیستی با اندازه‌ها و خواص الکتریکی مشابه را نشان داد.

کلیدواژه‌ها

موضوعات


  • Xu Y, Xu Y, Zhou C. Analysis of the mechanism for bubble effect on the movement behavior of separation particle in gas-solid separation fluidized bed based on fluorescence tracing method. Chem Eng J. 2025; 496:162330.
  • Han W, Zou H, Yue H. Particle separation using surface acoustic waves based on a microfluidic chip. Sens Actuators A Phys. 2025; 375:116557.
  • Nam YH, Lee SY, Lee SK, Kim JH. Microfluidic device with three-dimensional microtip electrodes for efficient capture and concentration of bacteria-sized microparticles using Dielectrophoretic. Sens Actuators B Chem. 2024; 413:115957.
  • Nam YH, Lee S, Lee SK, Kim JH. Microfluidic chip with integrated separation, mixing, and concentration operations for rapid and sensitive bacterial detection utilizing synthetic inorganic antibodies. Biosens Bioelectron. 2024; 258:136202.
  • Kale A, Patel S, Xuan X. Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment. Micromachines (Basel). 2018;9(3):123.
  • Nuttawut L, Chun Y. AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes. Biomicrofluidics. 2012;6(1):012807.
  • Masuda T, Maruyama H, Honda A, Arai F. Virus Enrichment for Single Virus Infection by Using 3D Insulator Based Dielectrophoresis. PLoS ONE. 2014;9(5): e94083.
  • Thomas RSW, Mitchell PD, Oreo ROC, Morgan H, Green NG. Image-based sorting and negative Dielectrophoresis for high-purity cell and particle separation. Electrophoresis. 2019;40(18):2718-27.
  • Wu Y, Ren Y, Tao Y, Hou L, Jiang H. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Anal Chem. 2018;90(19):11461-9.
  • Barbaros C, Yuejun K, Zhemin W, Dongqing L. Continuous particle separation by size via AC-Dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Electrophoresis. 2009;30(5):766-72.
  • Derakhshan R, Ramiar A, Ghasemi A. Continuous size-based DEP separation using a bi-gap electrode pair. Analyst. 2022;147(21):4724-35. DOI: 10.1039/D2AN01308H.
  • Sajed M, Ramiar A. Planar tilted electrodes for DEP manipulation/separation. Microsyst Technol. 2019;25(12):4541-52. DOI: 10.1007/s00542-019-04629-3.
  • Ghasemi A, Ramiar A, Derakhshan R. Numerical/experimental ternary separation in a wall-obstacle microchannel. J Chromatogr A. 2023;1702:464079. DOI: 10.1016/j.chroma.2023.464079
  • Han S, Lee C, Lee K. Lateral-DEP sorting of high-lipid microalgae. Lab Chip. 2019;19(18):3055-63. DOI: 10.1039/C9LC00850K.
  • Dalili A, Hosseini S, Samiei E, Sanati-Nezhad A. Parametric mapping with planar tilted electrodes. Sens Actuators B Chem. 2021;329:129204. DOI: 10.1016/j.snb.2020.129204.
  • Zhang L, Chen Y, Wang W. High-velocity DEP cell sorting with two-layer electrodes. Sens Actuators B Chem. 2024; 401:135028. DOI: 10.1016/j.snb.2023.135028.
  • Park S, Kim J. Impedance-activated multi-way DEP actuation (coplanar, sheathless). Lab Chip. 2024;24(5):1123-35. DOI: 10.1039/D4LC00622D.
  • Zhao Y, Li M, Wang H. Facing-electrode DEP for CTC isolation. Sci Rep. 2024;14(1):5678. DOI: 10.1038/s41598-024-56283-z.
  • Wang X, Liu Y. Sheathless, multi-target separation in a double-stair DEP channel. Chem Eng Sci. 2024; 292:119987. DOI: 10.1016/j.ces.2024.119987.
  • Lee J, Park H. Recent Advances in DEP manipulation and separation (Review). Micromachines (Basel). 2024;15(2):245. DOI: 10.3390/mi15020245.
  • Smith A, Johnson B. On-chip DEP single-cell manipulation (Review). Microsyst Nanoeng. 2024;10:45. DOI: 10.1038/s41378-024-00720-8.
  • Puri P, Kumar V, Belgamwar SU, Sharma NN. Microfluidic Device for Cell Trapping with Carbon Electrodes Using Dielectrophoresis. Biomed Microdevices. 2018;20(4):102.
  • Yin DF, Zhang XL, Han XW, Yang J, Hu N. Multi-Stage Particle Separation based on Microstructure Filtration and Dielectrophoresis. Micromachines (Basel). 2019;10(2):103.
  • Jones TB. Electromechanics of Particles. Cambridge: Cambridge University Press; 2005.
  • Chen L, Zheng XL, Hu N, Yang J, Luo HY, Jiang F, et al. Research Progress on Microfluidic Chip of Cell Separation Based on Dielectrophoresis. Chin J Anal Chem. 2015;43(2):300-8.
  • Deng YL, Kuo MY, Juang YJ. Development of flow through Dielectrophoresis microfluidic chips for biofuel production: Sorting and detection of microalgae with different lipid contents. Biomicrofluidics. 2014;8(6):064120.
  • Leal LG. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge: Cambridge University Press; 2007.
  • Lehninger AL. Principles of Biochemistry. New York: Worth Publishers; 1952.
  • Chen M, Fan D, Huang L, Gao Y. A new approach to microwave food research: Analyzing the electromagnetic response of basic amino acids. Innov Food Sci Emerg Technol. 2017;41:399-406.
  • Zhang M, Qiu W, Zhang R. Effect of Amino Acids on Microwave Dielectric Properties of Minced Antarctic Krill. Food Bioprocess Technol. 2017;10(10):1883-91.