[1] ا. ح. شامخی، مبانی موتورهای احتراق داخلی، انتشارات دانشگاه خواجه نصیر طوسی، تهران، 1396.
[2] س. صنایع، مبانی موتورهای احتراق داخلی، انتشارات دانشگاه علم وصنعت، تهران، 1393.
[3] Zhang R, Su W, Lin X, and Zhao L. Thermodynamic analysis and parametric optimization of a novel S-CO2 power cycle for the waste heat recovery of internal combustion engines, Energy, 2020 June; 209:1-14,.
[4] Song J, Li X, Ren X and Gu C. Performance improvement of a preheating supercritical CO2 based system for engine waste heat recovery. Energy Conversion and Management. 2018 April;161: 225-233.
[5] Song J, Li X, Wang K. and Markides CN. Parametric optimization of a combined supercritical CO2 cycle and organic Rankine cucle system for internal combustion engine waste heat recovery. Energy Conversion and Management, 2020 August;218:1-15.
[6] Pan M, Bian X, Zhu Y and Xiao G. Thermodynamic analysis of a combined supercritical CO2 and ejector expansion refrigeration cycle for engine waste heat recovery. Energy Conversion and Management. 2020 August; 224:1-15.
[7] Wu C, Xu X, Li Q, Wang Sh and Liu Ch. Proposal and assessment of a combined cooling and power system based on the regerative supercritical carbon dioxide Brayton cycle integrated with an absorbtion refrigeration cycle for engine waste heat recovery. Energy Conversion and Management. 2020 March;207:1-12.
[8] Mohammadkhani F, Yari M and Ranjbar F. A zero-dimensional model for simulation of a diesel engine and exergoeconomic analysis of waste heat recovery from its exhaust and coolant employing a high-temprature Kalina cycle. Energy Conversion and Management, 2019 July;198:1-15.
[9] Yun KT, Cho H, Luck R and Mago P. Modeling of reciprocating internal combustion engines for power generation and heat recovery. Applied Energy. 2020 July;102:327-335.