[1] Zhang H, Li Y. Numerical and real-time experimental investigation of a three-effect evacuated tube solar still in China. Appl Energy. 2013;102:567-75.
[2] Gui C, Fan K, Huang H, Liu P, Ren T, Zhang X, et al. A high-performance solar driven multistage desalination system by structural modification. ACS ES&T Water. 2025;5(2):629-38.
[3] Manasrah A, Younes MB, Abdelhafez E. Sun-powered solutions: Investigating productivity and economics of small-scale solar desalination system. Case Stud Therm Eng. 2024;63:105262.
[4] Muftah AK, Zili-Ghedira L, Abugderah MM, Hassen W, Becheikh N, Alshammari BM, et al. Sustainable Water Production: Solar Energy Integration in Multi-Effect Desalination Plants. Water. 2025;17(5):647.
[5] Tang Y, Bai Y, Guo Q, He X, Li M, Zhang C, et al. Performance analysis and novel cross-flow scheme of low-temperature multi-effect distillation for treating high-mineralized mine water. Water. 2024;16(22):3254.
[6]-Kumar A, Tiwari GN. Thermal modeling of active triple basin solar still using flat plate collector. Energy Convers Manag. 1999;40(5):529-40.
[7] Rai SN, Tiwari GN. Numerical simulation of multi-effect solar stills in India. Sol Energy. 1993;51(2):101-10.
[8] Al-Hassan AM, et al. Experimental study of four-effect evacuated tube solar still in Middle Eastern climate. Desalination. 2010;253(1-3):45-52.
[9] Silva VG, et al. Real-time performance of seven-effect solar still with flat plate collector in Brazil. Desalination. 2001;138(1-3):201-7.
[10]-Tanaka H, Nakatake Y. Field testing of a three-effect vacuum solar still in Japan. Sol Energy. 1998;65(3):167-72.
[11] Al-Mashaqbeh I, Al-Hawary M. Steady-state modeling of three-effect vacuum solar stills under Middle Eastern conditions. Energy. 2000;25(8):693-700.
[12] Rahman MM, et al. Three-effect vacuum solar still performance: numerical modeling and outdoor testing in Malaysia. Renew Energy. 2009;34(5):1204-10.
[13] Sethi V, Singh Z. Modeling of multi-effect vacuum desalination coupled with flat plate collector in India. Desalination. 2012;295:42-9.
[14] Toyama S, Aragaki T, Salah HM, Murase K, Sando M. Five-effect vertical solar still with basin: numerical modeling in Japan. J Chem Eng Japan. 1989;22(4):315-20.
[15] Ebadi A, Bahiraei M, Yaghoubi M, Amidpour M. Performance assessment of a novel vertical multi-effect diffusion solar desalination system integrated with photovoltaic thermal collectors and nanofluids. Desalination. 2023;556:116511.
[16] Elsherbiny SM, Fath HES. Thermal performance of a vertical solar still under Alexandria climate. Renew Energy. 1995;6(2):163-70.
[17]-El-Sebaii AA. Effect of wind speed on some designs of solar stills. Energy Convers Manag. 1998;39(3-4):467-77.
[18] Toyama S, Aragaki T, Salah HM, Murase K, Sando M. Simulation of a multieffect solar still and the static characteristics. J Chem Eng Japan. 1987;20(5):473-8.
[19] خلیلی م، طاهری م، معین غلامی. مطالعه تجربی تأثیر استفاده از پارچههای جاذب بر عملکرد آبشیرینکن خورشیدی پلکانی. مهندسی مکانیک دانشگاه تبریز. 2023;52(4):9-18.
[20] مهرانپور ا، غائبی ه، هادی رحیمی. تحلیل انرژی و اگزرژی یک سیستم ترکیبی جدید تولید توان و آب شیرین، با ترکیب چرخۀ فوق بحرانی تراکم مجدد دی اکسید کربن و چرخه نمکزدایی رطوبتزنی-رطوبتزدایی. مهندسی مکانیک دانشگاه تبریز. 2023;52(4):19-28.
[21] پاشاپور م، جعفرمدار ص، خلیل آریا ش. تحلیل اگزرژو-اقتصادی یک سیستم جدید برای تولید سهگانهی توان، گرما و آب شیرین. مهندسی مکانیک دانشگاه تبریز. 2022;52(1):1-10.
[22] خوشگفتار منش چراغ، تولمی. مدلسازی ترمودینامیکی، اگزرژو اکنومیکی و اگزرژو محیط زیستی آبشیرینکن MED. مهندسی مکانیک دانشگاه تبریز. 2019;49(3):127-36.
[23] میرزایی ضیاپور ب، مختاری زائر ا، رحیمی م. مطالعه موردی سرمایش ساختمان به وسیله سردکن ترموالکتریک با تغذیه از منابع انرژی خورشیدی. مهندسی مکانیک دانشگاه تبریز. 2022;52(1):227-36.
[24] اشجاری اقدم ُ، ُسینا، جعفرمدار، خلیلآریا، چیت ساز خویی عطا. شبیهسازی و بررسی پارامتری سیستم تولید سه گانه توان، گرما و تبرید با استفاده از سلولهای خورشیدی متمرکز و خنککننده ترموالکتریک. مهندسی مکانیک دانشگاه تبریز. 2023;53(1):41-9.
[25] Kalogirou S. Seawater desalination using renewable energy sources. Prog Energy Combust Sci. 2005;31(3):242-81.
[26] Kaviti AK, Yadav A, Shukla A. Inclined solar still designs: A review. Renew Sustain Energy Rev. 2016;54:429-51.
[27] Sampathkumar K, Senthilkumar P. Utilization of solar water heater in a single basin solar still—An experimental study. Desalination. 2012;297:8-19.
[28] Panchal H, Sathyamurthy R. Experimental analysis of single-basin solar still with porous fins. Int J Ambient Energy. 2020;41(1).
[29]-Velmurugan V, Gopalakrishnan M, Raghu R, Srithar K. Single basin solar still with fin for enhancing productivity. Energy Convers Manag. 2008;49(10):2602-8.
[30] Abujazar MSS, Fatihah S, Kabeel AE. Seawater desalination using inclined stepped solar still with copper trays in a wet tropical climate. Desalination. 2017;423:141-8.
[31] El-Agouz SA. Experimental investigation of stepped solar still with continuous water circulation. Energy Convers Manag. 2014;86:186-93.
[32] Singh P, Singh PP, Singh J, Singh RI. Performance evaluation of micro stepped solar still. Int Conf Eng Manag. 2013;16-20.
[33] El-Sebaii AA, Yaghmour SJ, Al-Hazmi FS, Faidah AS, Al-Marzouki FM, Al-Ghamdi AA. Active single basin solar still with a sensible storage medium. Desalination. 2009;249(2):699-706.
[34] Sakthivel M, Shanmugasundaram S. Effect of energy storage medium (black granite gravel) on the performance of a solar still. Int J Energy Res. 2008;32(1):68-82.
[35] Sharpley BF, Boelter LMK. Evaporation of water into quiet air: From a one-foot diameter surface. Ind Eng Chem. 1938;30(9):1125-31.
[36] Aburideh H, Deliou A, Abbad B, Alaoui F, Tassalit D, Tigrine Z. An experimental study of a solar still: Application on the sea water desalination of Fouka. Procedia Eng. 2012;33:475-84.
[37] Castillo-Téllez M, Pilatowsky-Figueroa I, Sánchez-Juárez Á, Fernández-Zayas JL. Experimental study on the air velocity effect on the efficiency and fresh water production in a forced convective double slope solar still. Appl Therm Eng. 2015;75:1192-200.
[38] Rashidi S, Rahbar N, Valipour MS, Esfahani JA. Enhancement of solar still by reticular porous media: Experimental investigation with exergy and economic analysis. Appl Therm Eng. 2018;130:1341-8.
[39] Reddy KS, Kumar KR, O'Donovan TS, Mallick TK. Performance analysis of an evacuated multi-stage solar water desalination system. Desalination. 2012;288:80-92.
[40] Fernández J, Chargoy N. Multi-stage, indirectly heated solar still. Sol Energy. 1990;44(4):215-23.
[41] Telkes M. Solar still construction. 1959.
[42]-Dsilva D, Rufuss W, Iniyan S, Suganthi L, Davies PA. Solar stills: A comprehensive review of designs, performance and material advances. Renew Sustain Energy Rev. 2016;63:464-96.
[43] Reddy KS, Sharon H. Active multi-effect vertical solar still: Mathematical modeling, performance investigation and enviro-economic analyses. Desalination. 2016;395:99-120.
[44] Elango C, Gunasekaran N, Sampathkumar K. Thermal models of solar still—A comprehensive review. Renew Sustain Energy Rev. 2015;47:856-911.
[45] Selçuk MK. Design and performance evaluation of a multiple-effect, tilted solar distillation unit. Sol Energy. 1964;8(1):23-30.
[46] Lim BJ, Yu SS, Park CD, Chung KY. One-dimensional numerical analysis of the effect of seawater feed rate on multi-effect solar stills. Trans Korean Soc Mech Eng B. 2016;40(7):477-84.
[47] Tanaka H. Theoretical analysis of a vertical multiple-effect diffusion solar still coupled with a tilted wick still. Desalination. 2016;377:65-72.
[48] Burgess G, Lovegrove K. Solar thermal powered desalination: Membrane versus distillation technologies. Centre for Sustainable Energy Systems, Australian National University; 2005.
[49] Cooper PI. The maximum efficiency of single-effect solar stills. Sol Energy. 1973;15(2):205-17.