[1] Keighobadi J, Faraji J, Janabi-Sharifi F, Hamed MA. Design and experimental evaluation of block-pulse functions and Legendre polynomials observer for attitude-heading reference system. ISA Transactions. 2021; 116: 232-244.
[2] Keighobadi J, Hosseini-Pishrobat M, Faraji J, Langehbiz MN. Design and Experimental Evaluation of Immersion and Invariance Observer for Low-Cost Attitude-Heading Reference System. IEEE Transactions on Industrial Electronics. 2020; 67(9): 7871-7878.
[3] Keighobadi J, Vosoughi H, Faraji J. Design and implementation of a model predictive observer for AHRS. GPS Solutions. 2018; 22: 1-18.
[5]. Quiroz-Garfias C, Silva-Navarro G, Rodriguez-Cortes H. Finite Element Analysis and Design of a CubeSat Class Picosatellite Structure. 2007 4th International Conference on Electrical and Electronics Engineering. 2007. IEEE.
[6] EMAMI H, FARHANI F. Frequency response analysis of a small satellite structure under random vibration acceleration loads using Mode superposition method. Material Science Research India. 2009; 6(1): 41-52.
[7] Emami H, Farhani F, Safarabadi M. Influence of modal effective mass distribution on the static and dynamic behavior of a satellite structure under base excitations. Material Science Research of India. 2008; 5(2): 209-218.
[8] Alhammadi A, Al-Shaibah M, Almesmari A, Vu T, Tsoupos A, Jarrar F, Marpu P. Quasi-Static and Dynamic Response of a 1U Nano-Satellite during Launching. Eighth European Conference for Aeronautics and Space Sciences (EUCASS). 2019. Madrid, Spain.
]9[ قریشی، محمد نوید؛ جعفری، محمد امین؛ صداقتی، امیر؛ ذبیحیان، احسان. طراحی، تحلیل و آزمون سازه ماهواره مخابراتی مطابق با استانداردECSS . علوم، فناوری و کاربردهای فضایی. 2023; 3(1): 48-63.
[10] Abdelal GF, Abuelfoutouh N, Gad AH, Finite element analysis for satellite structures: applications to their design, manufacture and testing. 2012: Springer Science & Business Media.
[11] Sedaghati R, Soucy Y, Etienne N. Experimental estimation of effective mass for structural dynamics and vibration applications. Proceedings of the 21st Intern ational Modal Analysis Conference (IMAC XXI). 2003.
[12] Roa AG, González MP, Téllez AC, González JP, Contreras OM, Pérez JC. Análisis dinámico estructural de satélite educativo CaSat. Computación y Sistemas. 2018; 22(2): 451-461.
[13] Cihan M, Haktanır OO, Akbulut I, Aslan AR. Flight dynamic analysis of ITUpSAT1. International Workshop on small satellites, new missions and new technologies. 2008.
[14] Abdelal GF, Abuelfoutouh N, Hamdy A. Mechanical fatigue and spectrum analysis of small-satellite structure. International Journal of Mechanics and Materials in Design. 2008; 4: 265-278.
[15] Garcia Perez A, Chimeno Manguan M, Sanz Andres AP, Alonso Rodrigo G. Numerical results of modal coupling in the UPMSat-2 structure. 2019.
[16] Boudjemai A, Amri R, Mankour A, Salem H, Bouanane MH, Boutchicha D. Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design. Materials & Design. 2012; 35: 266-275.
[17] Chiranjeeve HR, Kalaichelvan K, Rajadurai A. Design and vibration analysis of a 2U CubeSat structure using AA-6061 for AUNSAT-II. IOSR Journal of Mechanical and Civil Engineering. 2014; 1: 61.
[18] Bürger EE, Loureiro G, Bohrer RG, Costa LL, Hoffmann CT, Zambrano DH, Jaenisch GP. Development and analysis of a Brazilian CubeSat structure. Proceedings of the 22nd International Congress of Mechanical Engineering (COBEM). 2013.
[19] Al-Maliky FT, AlBermani MJ. Structural analysis of KufaSat using Ansys program. Artificial Satellites. 2018; 53(1): 29-35.
[20] Ampatzoglou A, Baltopoulos A, Kotzakolios A, Kostopoulos V. Qualification of composite structure for cubesat picosatellites as a demonstration for small satellite elements. International Journal of Aeronautical Science & Aerospace Research (IJASAR). 2014; 1(1): 1-10.
[21] Barsoum GI, Ibrahim HH, Fawzy MA. Static and random vibration analyses of a university CubeSat project. Journal of Physics. 2019; 1264(1): 012019.
[22] Güvenç C, Topcu B, Tola C. Mechanical design and finite element analysis of a 3 unit cubesat structure. Machines. Technologies. Materials. 2018; 12(5): 193-196.
[23] Soucy Y, Dharanipathi V, Sedaghati R, Comparison of methods for force limited vibration testing, in 2005 Conference & Exposition on Structural Dynamics (IMAC XXIII), Orlando, USA. 2005. p. 95-110.
[24] Fitzpatrick K, McNeill SI. Methods to specify random vibration acceleration environments that comply with force limit specifications. IMAC-XXV: conference & exposition on structural dynamics-smart structures and transducers. 2007. Citeseer.
[25]. Ricci S, Peeters B, Fetter R, Boland D, Debille J. Virtual shaker testing for predicting and improving vibration test performance. Proc. IMAC. 2009.
[26] Bamford R, Gayman W, Wada B, Equivalent spring-mass system for normal modes. 1971.
[27] Fu Z-F, He J, Modal analysis. 2001: Elsevier.
[28] Rocken C, Ying-Hwa K, Schreiner WS, Hunt D, Sokolovskiy S, McCormick C. COSMIC system description. Terrestrial Atmospheric and Oceanic Sciences. 2000; 11(1): 21-52.
[29] Plesseria JY, Rochus P, Defise JM. Effective modal masses. 5éme Congrès National de Mécanique Théorique et Appliquée. 2000.
[30] Larson WJ, Wertz JR. Space mission analysis and design. (No Title). 1999.
[31] System CL, Payload User’s Manual 2.1. 1999.
[32] Aborehab A, Kassem M, Nemnem A, Kamel M, Kamel H. Configuration design and modeling of an efficient small satellite structure. Engineering Solid Mechanics. 2020; 8(1): 7-20.
[33] Sarafin TP, Larson WJ. Spacecraft structures and mechanisms: from concept to launch. 1995.