[1] انوری ع, فلاح م, مصفا ا, رحمان پور م, پیشنهاد سیستم گرمایش، سرمایش و تولید توان یکپارچه خورشیدی بهینه و ارائه راهکارهای فنی مناسب برای کاهش مصرف انرژی در ساختمان اداری با رویکرد دستیابی به ساختمان انرژی صفر, نشریه مهندسی مکانیک دانشگاه تبریز، شماره پیاپی 107، جلد 54 ، شماره 2، تابستان، 1403 ، صفحه 50-41.
[2] بهنام گرمی ف, غایبی ه, وجدی م, رستم زاده ه, تحلیل انرژی و اگزرژی یک سیستم جدید تولید همزمان سه گانه بر پایه چرخه تبرید اجکتوری, نشریه مهندسی مکانیک دانشگاه تبریز، شماره پیاپی 99 ، جلد 52 ، شماره 2، تابستان، 1401 ، صفحه 20-11.
[3] Jahangir M, Mousavi S, Vaziri Rad M. A techno-economic comparison of a photovoltaic/thermal organic Rankine cycle with several renewable hybrid systems for a residential area in Rayen, Iran, Nergy Convers Manag 195, 2019, 244–261.
[4] Kasaeian A, Rajaee F, Yan W. Osmotic desalination by solar energy: a critical review, Renew Energy 134, 2019, 1473–1490.
[5] روایی ح, پسته ای س, تحلیل اگزرژی- اقتصادی سیستم تولید همزمان توان و گرما از بیوگاز تصفیه خانه فاضلاب (مطالعه موردی تصفیه خانه فاضلاب جنوب تهران), نشریه مهندسی مکانیک دانشگاه تبریز، شماره پیاپی 107 ، جلد 54 ، شماره 2، تابستان، 1403 ، صفحه 78-69.
[6] Dorotić H, Pukšec T, Duić N. Analysis of displacing natural gas boiler units in district heating systems by using multi-objective optimization and different taxing approaches, Energy Convers Manag 205, 2020.
[7] Marefati M, Mehrpooya M, Mousavi S. Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process, Int J Hydrog. Energy 44, 2019, 30256–79.
[8] Carapellucci R, Di Battista D, Cipollone R. The retrofitting of a coal-fired subcritical steam power plant for carbon dioxide capture: a comparison between MCFC-based active systems and conventional MEA, Energy Convers Manag 194, 2019, 124–139.
[9] قاضی زاده احسایی ح, بنی اسد عسکری ا, عامری م, بررسی ترمواکونومیک پمپ گرمایی منبع زمینی انبساط مستقیم دی اکسیدکربن با استفاده از منبسط کننده و مبادله کن گرمای داخلی, نشریه مهندسی مکانیک دانشگاه تبریز, شماره پیاپی 95,جلد 51, شماره 2, تابستان 1400, صفحه 168-159.
[10] Aliyon K, Mehrpooya M, Hajinezhad A. Comparison of different CO2 liquefaction processes and exergoeconomic evaluation of integrated CO2 liquefaction and absorption refrigeration system, Energy Convers. Manag. 211., 2020. 112752.
[11] Davoodi S, Al-Shargabi M, Wood DA, Rukavishnikov VS, Minaev KM. Review of technological progress in carbon dioxide capture, storage, and utilization, Gas Sci. Eng. 117, 2023, 205070.
[12] Otsuki T, Shibata Y, Matsuo Y, Obane H, Morimoto S. Role of carbon dioxide capture and storage in energy systems for net-zero emissions in Japan, Int. J. Greenh. Gas Control 132 (2024) 104065.
[13] Ferrara G, Lanzini A, Leone P, Ho MT, Wiley DE, Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption, Energy 130, 2017, 113–128.
[14] Lu S, Fang M, Li Q, Chen H, Chen F, Sun W, Wang H, Liu H, Zhang J, Zhang X, Liu H. The experience in the research and design of a 2 million tons / year flue gas CO2 capture project for coal-fired power plants, Int. J. Greenh. Gas Control 110, 2021, 103423.
[15] Choi J, Cho H, Yun S, Jang M, Oh S, Binns M, Kim J. Process design and optimization of MEA-based CO2 capture processes for non-power industries, Energy 2019.
[16] Krótki A, Wi L, Stec M, Spietz T, Wilk A, Chwo T, Jastrz K. Experimental results of advanced technological modifications for a CO2 capture process using amine scrubbing, Int. J. Greenh. Gas Control 96, 2020.
[17] Michaelides EE. Thermodynamic analysis and power requirements of CO2 capture , transportation , and storage in the ocean, Energy 230, 2021, 120804.
[18] Kalatjari HR, Haghtalab A, Nasr MRJ, Heydarinasab A. Experimental, simulation and thermodynamic modeling of an acid gas removal pilot plant for CO2 capturing by mono-ethanol amine solution, J. Nat. Gas Sci. Eng. 72, 2019, 103001.
[19] Soltani SM, Fennell PS, Mac Dowell N. A parametric study of CO2 capture from gas-fired power plants using monoethanolamine (MEA), Int. J. Greenh. Gas Control 63, 2017, 321–328.
[20] Kothandaraman A. Carbon dioxide capture by chemical Absorption: a solvent comparison study, Carbon N. Y. 2010 144–184.
[21] Zhang G, Yang Y, Xu G, Zhang K, Zhang D. CO2 capture by chemical absorption in coal-fired power plants: energy saving mechanism, proposed methods, and performance analysis, Int J Greenh Gas Control 39, 2015, 449–462.
[22]Moran MJ, Shapiro H, Boettner DD, Bailey MB. Fundamentals of Engineering Thermodynamics, Eighth Edi, 2014, WILEY.
[23] Bejan A, Tsatsaronis G, Moran MJ. Thermal Design and Optimization, second edi, 1996, WILEY.
[24] Haghbakhsh R, Raeissi S. Fluid Phase Equilibria A novel atomic contribution model for the standard chemical exergies of organic compounds, Fluid Phase Equilib. 507, 2020, 112397.
[25] Turton R, Bailie R, Whiting W, Shaeiwitz J. Analysis, synthesis and design of chemical processes (3rd ed.), Pearson Education, New Jersey, US, 2008.
[26] Choi J, Cho H, Yun S, Jang MG, Oh SY, Binns M, Kim JK. Process design and optimization of MEA-based CO2 capture processes for non-power industries, Energy 185, 2019, 971–980.
[27] Zammit KD (EPRI). Cooling System Retrofit Cost Analysis, 2002.
[28] Farshi LG, Khalili S. Thermoeconomic analysis of a new ejector boosted hybrid heat pump (EBHP) and comparison with three conventional types of heat pumps, Energy 170, 2019, 619–635.
[29] Notz R, Mangalapally HP, Hasse H. Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA, Int. J. Greenh. Gas Control 6, 2012, 84–112.