[1] Rich SI, Wood RJ, Majidi C. Untethered soft robotics. Nature Electronics. 2018;1(2):102-12.
[2] Zhao W, Zhang Y, Wang N. Soft robotics: Research, challenges, and prospects. Journal of Robotics and Mechatronics. 2021;33(1):45-68.
[3] Schmitt F, Piccin O, Barbe L, Bayle B. Soft Robots Manufacturing: A Review. Front Robot AI. 2018;5:84.
[4] Dehghani H, Pourghodrat A, Terry BS, Nelson CA, Oleynikov D, Dasgupta P. Semi-Autonomous Locomotion for Diagnostic Endoscopy Device1. Journal of Medical Devices. 2015;9(3).
[5] Kuang X, Roach DJ, Wu J, Hamel CM, Ding Z, Wang T, et al. Advances in 4D printing: materials and applications. Advanced Functional Materials. 2019;29(2):1805290.
[6] Park Y-L. Soft wearable robotics technologies for body motion sensing. Human Modelling for Bio-Inspired Robotics: Elsevier; 2017. p. 161-84.
[7] Runciman M, Darzi A, Mylonas GP. Soft Robotics in Minimally Invasive Surgery. Soft Robot. 2019;6(4):423-43.
[8] Zhu Y, Guo Q, Zhang Y, Zhu J, Zhang P, Gao M, et al. A walking soft robot driven by electromagnetism inside the body. Engineering Research Express. 2024;6(1):015203.
[9] Gong X, Yang K, Xie J, Wang Y, Kulkarni P, Hobbs AS, et al. Rotary actuators based on pneumatically driven elastomeric structures. Advanced Materials. 2016;28(34):7533-8.
[10] Palmieri P, Gaidano M, Troise M, Salamina L, Ruggeri A, Mauro S, editors. A deployable and inflatable robotic arm concept for aerospace applications. 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace); 2021: IEEE.
[11] Zhang Y, Li P, Quan J, Li L, Zhang G, Zhou D. Progress, challenges, and prospects of soft robotics for space applications. Advanced Intelligent Systems. 2023;5(3):2200071.
[12] Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small‐scale robotics. Advanced materials. 2017;29(13):1603483.
[13] Abolhosen AMR, Lee S, Fukuda K, Someya T, González LH, Shintake J. Functional soft robotic composites based on organic photovoltaic and dielectric elastomer actuator. Scientific Reports. 2024;14(1):9953.
[14] Svetozarevic B, Nagy Z, Hofer J, Jacob D, Begle M, Chatzi E, et al., editors. SoRo-Track: A two-axis soft robotic platform for solar tracking and building-integrated photovoltaic applications. 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016: IEEE.
[15] Aracri S, Giorgio-Serchi F, Suaria G, Sayed ME, Nemitz MP, Mahon S, et al. Soft robots for ocean exploration and offshore operations: A perspective. Soft Robotics. 2021;8(6):625-39.
[16] Elsayed Y, Lekakou C, Geng T, Saaj CM, editors. Design optimisation of soft silicone pneumatic actuators using finite element analysis. 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; 2014: IEEE.
[17] Polygerinos P, Wang Z, Overvelde JT, Galloway KC, Wood RJ, Bertoldi K, et al. Modeling of soft fiber-reinforced bending actuators. IEEE Transactions on Robotics. 2015;31(3):778-89.
[18] Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA, Mazzeo AD, et al. Multigait soft robot. Proceedings of the national academy of sciences. 2011;108(51):20400-3.
[19] Moseley P, Florez JM, Sonar HA, Agarwal G, Curtin W, Paik J. Modeling, design, and development of soft pneumatic actuators with finite element method. Advanced engineering materials. 2016;18(6):978-88.
[20] Boyraz P, Runge G, Raatz A, editors. An overview of novel actuators for soft robotics. Actuators; 2018: MDPI.
[21] An S-M, Ryu J, Cho M, Cho K-J. Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model. Smart Materials and Structures. 2012;21(5):055009.
[22] Sofla AYN, Elzey DM, Wadley HNG. Two-way Antagonistic Shape Actuation Based on the One-way Shape Memory Effect. Journal of Intelligent Material Systems and Structures. 2008;19(9):1017-27.
[23] مسلمینی ن, دهقانی ر, کارآموز راوری مر. مدلسازی میکروربات نرم مجهز به محرک آلیاژ حافظهدار و بررسی تاثیر جریان الکتریکی و سرعت سیال خنک کننده بر رفتار دینامیکی آن. مهندسی مکانیک دانشگاه تبریز. 2022;52(2):153-62.
[24] Scalet G, editor Two-way and multiple-way shape memory polymers for soft robotics: An overview. Actuators; 2020: MDPI.
[25] Youn J-H, Jeong SM, Hwang G, Kim H, Hyeon K, Park J, et al. Dielectric elastomer actuator for soft robotics applications and challenges. Applied Sciences. 2020;10(2):640.
[26] Bar-Cohen Y, Cardoso V, Ribeiro C, Lanceros-Méndez S. Electroactive polymers as actuators. Advanced piezoelectric materials. 2017:319-52.
[27] Moura V, editor Magnetically Actuated Multiscale Medical Robots. IROS 2012 Full-day Workshop; 2012: Citeseer.
[28] Schmitt F, Piccin O, Bayle B, Renaud P, Barbé L. Inverted honeycomb cell as a reinforcement structure for building soft pneumatic linear actuators. Journal of mechanisms and robotics. 2021;13(1):011020.
[29] Ebrahimi N, Bi C, Cappelleri DJ, Ciuti G, Conn AT, Faivre D, et al. Magnetic actuation methods in bio/soft robotics. Advanced Functional Materials. 2021;31(11):2005137.
[30] Li J, Barjuei ES, Ciuti G, Hao Y, Zhang P, Menciassi A, et al. Magnetically-driven medical robots: An analytical magnetic model for endoscopic capsules design. Journal of Magnetism and Magnetic Materials. 2018;452:278-87.
[31] Xu T, Yu J, Yan X, Choi H, Zhang L. Magnetic actuation based motion control for microrobots: An overview. Micromachines. 2015;6(9):1346-64.
[32] Sliker L, Ciuti G, Rentschler M, Menciassi A. Magnetically driven medical devices: a review. Expert review of medical devices. 2015;12(6):737-52.
[33] Gerboni G, Ranzani T, Diodato A, Ciuti G, Cianchetti M, Menciassi A. Modular soft mechatronic manipulator for minimally invasive surgery (MIS): overall architecture and development of a fully integrated soft module. Meccanica. 2015;50:2865-78.
[34] Grazioso S, Di Gironimo G, Siciliano B. A geometrically exact model for soft continuum robots: The finite element deformation space formulation. Soft robotics. 2019;6(6):790-811.
[35] Chen Y, Li W, Gong Y. Static modeling and analysis of soft manipulator considering environment contact based on segmented constant curvature method. Industrial Robot: the international journal of robotics research and application. 2020;48(2):233-46.
[36] Falkenhahn V, Mahl T, Hildebrandt A, Neumann R, Sawodny O. Dynamic modeling of bellows-actuated continuum robots using the Euler–Lagrange formalism. IEEE Transactions on Robotics. 2015;31(6):1483-96.
[37] توکلی س, دهقانی ر, کارآموز راوری مر. کنترل مقاوم مبتنی بر شبکه عصبی شعاعی و تابع تصویر یک ربات پیوسته مجهز به محرکهای کابلی. مهندسی مکانیک دانشگاه تبریز. 2021;51(3):17-24.
[38] Janabi-Sharifi F, Jalali A, Walker ID. Cosserat rod-based dynamic modeling of tendon-driven continuum robots: A tutorial. IEEE Access. 2021;9:68703-19.
[39] Till J, Aloi V, Rucker C. Real-time dynamics of soft and continuum robots based on Cosserat rod models. The International Journal of Robotics Research. 2019;38(6):723-46.
[40] Till J, Aloi V, Riojas KE, Anderson PL, Webster III RJ, Rucker C. A dynamic model for concentric tube robots. IEEE Transactions on Robotics. 2020;36(6):1704-18.
[41] Jackson JD. Classical electrodynamics: John Wiley & Sons; 2021.
[42] Jeon S, Hoshiar AK, Kim K, Lee S, Kim E, Lee S, et al. A magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network. Soft Robot. 2019;6(1):54-68.
[43] Rucker C. Integrating rotations using nonunit quaternions. IEEE Robotics and Automation Letters. 2018;3(4):2979-86.
[44] Jeon S, Hoshiar AK, Kim S, Lee S, Kim E, Lee S, et al. Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro and Nano Systems Letters. 2018;6:1-10.
[45] Niu H, Feng R, Xie Y, Jiang B, Sheng Y, Yu Y, et al. Magworm: A biomimetic magnet embedded worm-like soft robot. Soft robotics. 2021;8(5):507-18.