[1] Arora P, Zhang Z. Battery separators. Chemical reviews. 2004;104(10):4419-62.
[2] Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. Journal of the electrochemical society. 2011;158(3):R1.
[3] Zhao L, Tong J, Zheng M, Chen M, Li W. Experimental study on the thermal management performance of immersion cooling for 18650 lithium-ion battery module. Process Safety and Environmental Protection. 2024;192:634-42.
[4] Chen Z, Yang S, Pan M, Xu J. Experimental investigation on thermal management of lithium-ion battery with roll bond liquid cooling plate. Applied Thermal Engineering. 2022;206:118106.
[5] Lin J, Liu X, Li S, Zhang C, Yang S. A review on recent progress, challenges and perspective of battery thermal management system. International Journal of Heat and Mass Transfer. 2021;167:120834.
[6] Fan L, Khodadadi J, Pesaran A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. Journal of Power Sources. 2013;238:301-12.
[7] Mohammadian SK, Zhang Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. Journal of Power Sources. 2015;273:431-9.
[8] Karimi G, Li X. Thermal management of lithium‐ion batteries for electric vehicles. International Journal of Energy Research. 2013;37(1):13-24.
[9] Inui Y, Kobayashi Y, Watanabe Y, Watase Y, Kitamura Y. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Conversion and Management. 2007;48(7):2103-9.
[10] Xin S, Wang C, Xi H. Thermal management scheme and optimization of cylindrical lithium-ion battery pack based on air cooling and liquid cooling. Applied Thermal Engineering. 2023;224:120100.
[11] Mohammadian SK, Rassoulinejad-Mousavi SM, Zhang Y. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam. Journal of Power Sources. 2015;296:305-13.
[12] Yang M, Mathew G, Nemati H, Moghimi M. A novel approach for active cooling of a battery at cell level: Air-cooled mini-channel heat sink, enhanced with intermittent metal foam. Journal of Energy Storage. 2024;81:110374.
[13] Wang H, Guo Y, Ren Y, Yeboah S, Wang J, Long F, et al. Investigation of the thermal management potential of phase change material for lithium-ion battery. Applied Thermal Engineering. 2024;236:121590.
[14] Zare P, Perera N, Lahr J, Hasan R. A novel thermal management system for cylindrical lithium-ion batteries using internal-external fin-enhanced phase change material. Applied Thermal Engineering. 2024;238:121985.
[15]. Nazar MW, Iqbal N, Ali M, Nazir H, Amjad MZB. Thermal management of Li-ion battery by using active and passive cooling method. Journal of Energy Storage. 2023;61:106800.
[16]. Bai F, Chen M, Song W, Feng Z, Li Y, Ding Y. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Applied Thermal Engineering. 2017;126:17-27.
[17]. Cao J, Ling Z, Fang X, Zhang Z. Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge. Journal of Power Sources. 2020;450:227673.
[18] Mousavi S, Zadehkabir A, Siavashi M, Yang X. An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials. Applied Energy. 2023;334:120643.
[19] Ling Z, Wang F, Fang X, Gao X, Zhang Z. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Applied energy. 2015;148:403-9.
[20] کوشککی ح, رحمانیان س. بررسی عددی مدیریت گرمایی باتری لیتیوم-یون با استفاده از مادهی تغییر فاز دهنده و فوم فلزی. مجله مهندسی مکانیک دانشگاه تبریز. 1403، د. 54، ش. 108، ص. 123-132.
[21] میر محمدی ع, الهیاری س. طراحی سیستم خنککاری برای باتری لیتوم-یون در نرخ دشارژهای مختلف با مدلسازی الکتریکی-حرارتی. مجله مهندسی مکانیک دانشگاه تبریز. 1400، د. 51، ش. 94، ص. 239-246.
[22] Taghilou M, Mohammadi MS. Thermal management of lithium-ion battery in the presence of phase change material with nanoparticles considering thermal contact resistance. Journal of Energy Storage. 2022;56:106029.
[23] Buonomo B, Manca O, Ercole D, Nardini S. Numerical simulation of thermal energy storage with phase change material and aluminum foam. 2016.
[24] Abdi A, Ignatowicz M, Gunasekara SN, Chiu JN, Martin V. Experimental investigation of thermo-physical properties of n-octadecane and n-eicosane. International Journal of Heat and Mass Transfer. 2020;161:120285.
[25] Nield DA, Bejan A. Convection in porous media: Springer; 2006.
[26] Lee JS, Ogawa K. Pressure drop though packed bed. Journal of chemical engineering of Japan. 1994;27(5):691-3.
[27] Joseph DD, Nield DA, Papanicolaou G. Nonlinear equation governing flow in a saturated porous medium. Water Resources Research. 1982;18(4):1049-52.
[28] Buonomo B, Ercole D, Manca O, Menale F. Thermal cooling behaviors of lithium-ion batteries by metal foam with phase change materials. Energy Procedia. 2018;148:1175-82.
[29] De Vita A, Maheshwari A, Destro M, Santarelli M, Carello M. Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications. Applied Energy. 2017;206:101-12.
[30] Thirugnanam K, TP ERJ, Singh M, Kumar P. Mathematical modeling of Li-ion battery using genetic algorithm approach for V2G applications. IEEE transactions on Energy conversion. 2014;29(2):332-43.
[31] Handly D. Momentum and heat transfer mechanisms in regular shaped packings. Trans Inst Chem Eng. 1968;46:251-9.
[32] Mousavi S, Siavashi M, Zadehkabir A. A new design for hybrid cooling of Li-ion battery pack utilizing PCM and mini channel cold plates. Applied Thermal Engineering. 2021;197:117398.
[33] Gao D, Tian F-B, Chen Z, Zhang D. An improved lattice Boltzmann method for solid-liquid phase change in porous media under local thermal non-equilibrium conditions. International Journal of Heat and Mass Transfer. 2017;110:58-62.