بررسی کمی و کیفی پارامترهای مؤثر بر مدل اصطکاکی HK در فاز اول جابه‌جایی نانوذره طلا مبتنی بر میکروسکوپ نیروی اتمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی مکانیک، دانشگاه اراک، اراک، ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی ساخت و تولید، دانشگاه اراک، اراک، ایران

چکیده

در مقیاس میکرو/نانو اصطکاک و چسبندگی از اهمیت بالایی برخوردار است. بنابراین استفاده از مدل‌های اصطکاکی مانند مدل اصطکاکی HK می‌تواند به‌دقت نتایج حاصل از شبیه‌سازی جابه‌جایی نانوذارات کمک کند. فاز اول جابه‌جایی نانو ذرات شامل محاسبه نیرو و زمان بحرانی می‌باشد. محاسبه دقیق نیروی بحرانی موجب عدم آسیب‌رسانی به بافت و محاسبه دقیق زمان بحرانی موجب جابه‌جایی دقیق نانوذره می‌شود. در این پژوهش به‌منظور بررسی تأثیر پارامترهای مدل اصطکاکی HK بر کاهش نیروی بحرانی و افزایش زمان بحرانی در جابه‌جایی نانوذره طلا از طراحی آزمایش به روش تاگوچی و تحلیل حساسیت به E-fast  استفاده‌شده است. پارامترهای ورودی مدل اصطکاکی HK شامل،،، B و M می‌باشند. با توجه به نتایج به‌دست‌آمده مشاهده شد که اثرگذارترین پارامتر بر کاهش نیروی بحرانی، پارامتر B با 66 درصد تأثیر می‌باشد. همچنین دومین پارامتر مؤثر بر نیروی بحرانی، پارامتر M با 22 درصد تأثیر می‌باشد. مؤثرترین پارامترها برای زمان بحرانی نیز پارامتر B و M به ترتیب با 76 و 15 درصد تأثیر می‌باشند.

کلیدواژه‌ها

موضوعات


[1] Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF, Alsteens D. Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chemical Reviews. 2020 Nov 9;121(19):11701-25.
[2] Burger P, Singh G, Johansson C, Moya C, Bruylants G, Jakob G, Kalaboukhov A. Atomic Force Manipulation of Single Magnetic Nanoparticles for Spin-Based Electronics. ACS nano. 2022 Oct 31;16(11):19253-60.
[3] Bathaee SH. Sensitivity analysis of peripheral parameters in three dimentional nano-manipulation by using HK model. Journal of Solid and Fluid Mechanics. 2019 Jun 22;9(2):123-39.
[4] Zakeri M, Faraji J. Dynamic modeling of nano/microparticles displacement in multi-point contact based on the Rumpf model. Modares Mechanical Engineering. 2016 Oct 10;16(8):120-30.
[5] Heidari P, Salehi M, Ruhani B, Purcar V, Căprărescu S. Influence of Thin Film Deposition on AFM Cantilever Tips in Adhesion and Young’s Modulus of MEMS Surfaces. Materials. 2022 Mar 12;15(6):2102.
[6] Taheri M. Application of atomic force microscopy in critical force and critical time extraction of 2D manipulation for gastric cancer tissue with different friction models. Nanoscale. 2022 Apr 21;9(1):136-45.
[7] Yuan S, Liu L, Wang Z, Xi N, Wang Y. Study of nano-manipulation approach based on the least action principle using AFM based robotic system. In2017 36th Chinese Control Conference (CCC) 2017 Jul 26 (pp. 4424-4429). IEEE.
[8] Zhang Y, Zhao J, Yu H, Li P, Liang W, Liu Z, Lee GB, Liu L, Li WJ, Wang Z. Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK). Science advances. 2020 Aug 5;6(32):eaba9628.
[9] Mirzaluo M, Fereiduni F, Taheri M, Modabberifar M. Experimental extraction of Young’s modulus of MCF-7 tissue using atomic force microscopy and the spherical contact models. European Biophysics Journal. 2023 Feb;52(1-2):81-90.
[10] Corbin EA, Kong F, Lim CT, King WP, Bashir R. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab on a Chip. 2015;15(3):839-47.
[11] Wang K, Taylor KG, Ma L. Advancing the application of atomic force microscopy (AFM) to the characterization and quantification of geological material properties. International Journal of Coal Geology. 2021 Nov 1;247:103852.
[12] Li Y, Yang J, Pan Z, Tong W. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel. 2020 Jan 15;260:116352.
[13] Taheri M, Jabbari A, Eghdami Z, Faraji H, Mollaei T. Experimental and theoretical investigation of Young's modulus of liver cancer tissue using rectangular, V-shaped and dagger cantilevers of an atomic force microscope. Journal of Solid and Fluid Mechanics. 2023 Sep 18.
[14] Taheri M. Investigation of the effect of different friction models on experimental extraction of 3D nanomanipulation force and critical time of colon cancer tissue. Amirkabir Journal of Mechanical Engineering. 2022 Jun 22;54(4):791-804.
[15] Korayem MH, Khaksar H. A survey on dynamic modeling of manipulation of nanoparticles based on atomic force microscope and investigation of involved factors. Journal of Nanoparticle Research. 2020 Jan;22(1):27.
[16] Taheri M. Using of sphericalcontact models in 3d manipulationmodeling of Au nanoparticles using atomic force microscopy to calculate the critical force and time. Mechanical Engineering Tabriz University. 2018 Jul 23;48(2):175-84.
[17] Adams GG, Mu¨ ftu¨ S, Azhar NM. A scale-dependent model for multi-asperity contact and friction. J. Trib.. 2003 Oct 1;125(4):700-8.
[18] Hurtado JA, Kim KS. Scale effects in friction of single–asperity contacts. I. From concurrent slip to single–dislocation–assisted slip. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 1999 Sep 8;455(1989):3363-84.
[19] Atarodi A, Karami H, Ardeshir A, Hosseini K. Optimization of the Geometric Parameters of the Protective Spur Dike using Taguchi Method and GRA. JWSS-Isfahan University of Technology. 2020 May 10;24(1):13-26.
[20] Salamat-Talab M, Tahmasbi V, Safari M, Zeinolabedin Beygi A. Mathematical modeling, sobol sensitivity analysis and optimization of main parameters in drilling of E-glass/epoxy laminated composites. Iranian Journal of Manufacturing Engineering. 2022 Feb 19;8(11):43-53.
[21] Saltelli A, Tarantola S, Chan KS. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics. 1999 Feb 1;41(1):39-56.
[22] Homma T, Saltelli A. Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety. 1996 Apr 1;52(1):1-7.