بررسی عددی مدیریت گرمایی باتری لیتیوم- یون با استفاده از ماده‌ی تغییر فاز دهنده و فوم فلزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشگاه جهرم، جهرم، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه جهرم، جهرم، ایران

چکیده

هدف از پژوهش حاضر، خنک کاری یک باتری لیتیوم-یون با استفاده از دو حالت ماده­ی تغییر فاز دهنده و ترکیب آن با فوم مس (سامانه هیبریدی) بر مبنای دینامیک سیالات محاسباتی است. شبیه سازی با استفاده از نرم افزار Ansys-Fluent و بر اساس مدل دو بعدی NTGK برای باتری و مدل آنتالپی-تخلخل برای ماده­ی تغییر فاز دهنده صورت گرفت. تاثیر سرعت‌های دشارژ و ضریب انتقال گرمای همرفتی بررسی گردید. نتایج نشان داد که به کارگیری ماده­ی تغییر فاز دهنده باعث کاهش دمای باتری به میزان °C 97/11 ، °C 22/32 و °C 04/35 به ترتیب در سرعت­های دشارژ C1، C3 و C5 شده است. با افزایش ضریب انتقال گرما همرفتی از  5/0 به  10 در سامانه­ی هیبریدی، بهبود 10 درصدی در کاهش دمای باتری مشاهده گردید. در فرآیند بازیابی ماده‌‌ی تغییر فازدهنده و در سرعت دشارژ C5، مدت زمان جامد شدن ماده­ی تغییر فاز دهنده در سامانه­ی هیبریدی نسبت به ماده‌ی تغییر فاز دهنده به میزان 45 درصد بهبود یافت. در نهایت وجود فوم فلزی باعث بهبود عملکرد سامانه­ی مدیریت گرمایی شده است.

کلیدواژه‌ها

موضوعات


[1] نجاری ب, میرزایی م, طاحونی ا. طراحی سیستم کنترل      بهینه‌ی توزیع گشتاور با رویکرد پیش بین به منظور بهبود    پایداری و کاهش مصرف انرژی در خودروی الکتریکی.          مهندسی مکانیک دانشگاه تبریز.
[2] Lin J, Liu X, Li S, Zhang C, Yang S. A review         on recent progress, challenges and perspective of battery thermal management system. Int J Heat Mass Transf. 2021 Mar 1;167:120834.
[3]  Wang J, Yu Y, Song L, Yue Y, Zeng W, Mei W, et al. Thermal management performance and optimization of a novel system combining heat pipe and composite fin for prismatic lithium-ion batteries. Energy Convers Manag. 2024 Feb 15;302:118106.
[4]  Thakur AK, Prabakaran R, Elkadeem MR, Sharshir SW, Arıcı M, Wang C, et al. A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. J Energy Storage. 2020;32:101771.
[5]  Hirano H, Tajima T, Hasegawa T, Sekiguchi T, Uchino M. Boiling liquid battery cooling for electric vehicle. In: 2014 IEEE conference and expo transportation electrification Asia-Pacific (ITEC Asia-Pacific). IEEE; 2014. p. 1–4.
[6]  Wiriyasart S, Hommalee C, Sirikasemsuk S, Prurapark R, Naphon P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Studies in Thermal Engineering. 2020 Apr 1;18:100583.
[7]  Wang Q, Jiang B, Xue QF, Sun HL, Li B, Zou HM, et al. Experimental investigation on EV battery cooling and heating by heat pipes. Appl Therm Eng. 2015 Sep 5;88:54–60.
[8]  Lyu Y, Siddique ARM, Majid SH, Biglarbegian M, Gadsden SA, Mahmud S. Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports. 2019 Nov 1;5:822–7.
[9] Yang XH, Tan SC, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Convers Manag. 2016 Jun 1;117:577–85.
[10] Akbarzadeh M, Jaguemont J, Kalogiannis T, Karimi D, He J, Jin L, et al. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles. Energy Convers Manag. 2021 Mar 1;231:113862.
 [11] Nasehi R, Alamatsaz A, Salimpour MR. Using multi-shell phase change materials layers for cooling a lithium-ion battery. Thermal Science. 2016;20(2):391–403.
 [12] Chen J, Kang S, Jiaqiang E, Huang Z, Wei K, Zhang B, et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review. J Power Sources. 2019;442:227228.
 [13] Lv Y, Situ W, Yang X, Zhang G, Wang Z. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Convers Manag. 2018 May 1;163:250–9.
[14] Cao J, Luo M, Fang X, Ling Z, Zhang
 Z. Liquid cooling with phase change materials
for cylindrical Li-ion batteries: An experimental and numerical study. Energy [Internet]. 2020; 191:
116565. Available from: https://www.sciencedirect.com/science/article/pii/S0360544219322601
[15]  Lv Y, Yang X, Zhang G. Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles. Appl Therm Eng. 2020 Oct 1;179.
[16] Morali U. A numerical and statistical implementation of a thermal model for a lithium-ion battery. Energy. 2022 Feb 1;240.
[17] Mohammed AG, Wang Q, Elfeky KE. Rapid cooling effectiveness of Li-ion battery module with multiple phase change materials for plug-in hybrid electric vehicle. International Journal of Thermal Sciences. 2023 Mar 1;185.
[18] Saxena V, Sharma A, Kothari R, Sahu SK, Kundalwal SI. Analysis of Li-ion battery under high discharge rate embedded with metal foam phase change composite: A numerical study. J Energy Storage. 2024 Apr 15;84.
[19] Bamdezh MA, Molaeimanesh GR. Impact of system structure on the performance of a hybrid thermal management system for a Li-ion battery module. J Power Sources. 2020 May 1;457.
[20] Moaveni A, Siavashi M, Mousavi S. Passive and hybrid battery thermal management system by cooling flow control, employing nano-PCM, fins, and metal foam. Energy. 2024 Feb 1;288.
[21] Fluent A. Ansys fluent theory guide. Ansys Inc, USA. 2011;15317:724–46.
[22] Kim GH, Smith K, Lee KJ, Santhanagopalan S, Pesaran A. Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales. J Electrochem Soc. 2011;158(8):A955.
[23] Bamdezh MA, Molaeimanesh GR, Zanganeh S. Role of foam anisotropy used in the phase-change composite material for the hybrid thermal management system of lithium-ion battery. J Energy Storage. 2020 Dec 1;32:101778.
[24] Rahmanian-Koushkaki H, Rahmanian S, Setareh M. Effect of local mechanical oscillation on the performance of PCM thermal energy storage with various unit configurations. J Energy Storage. 2024 May 30;88.
[25] Rahmanian‐Koushkaki H, Rahmanian S, Moein‐Jahromi M, Sopian K. Performance evaluation of concentrated photovoltaics with phase change materials embedded metal foam‐based heat sink using gradient strategy. Int J Energy Res. 2022;
[26] Seong Kim U, Yi J, Shin CB, Han T, Park S. Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature. J Electrochem Soc. 2011;158(5):A611.
[27] Mavi A, Arslan O. Numerical investigation on the thermal management of Li-ion batteries for electric vehicles considering the cooling media with phase change for the auxiliary use. J Energy Storage. 2024 Jan 30;77.
[28] میر محمدی ع, الهیاری س. طراحی سیستم خنک‌کاری برای  باتری لیتوم- یون در سرعت دشارژهای مختلف با مدل‌سازی الکتریکی- گرمایی. مهندسی مکانیک دانشگاه تبریز، 51:(1)، 46-239، 2021.  
[29] مولایی منش غ, موسوی خوشدل س, نعمتی ا. بررسی توزیع دما طی تست تنش دینامیکی بر روی سطح باتری لیتیوم-یون بکار گرفته شده در یک خودروی هیبرید الکتریکی. نشریه مهندسی مکانیک امیرکبیر،52: 512-1497، 2019.
[30] Moaveni A, Siavashi M, Mousavi S. Passive and hybrid battery thermal management system by cooling flow control, employing nano-PCM, fins, and metal foam. Energy. 2024 Feb 1;288.
[31] Ping P, Peng R, Kong D, Chen G, Wen J. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment. Energy Convers Manag. 2018;176:131–46.
[32] NematpourKeshteli A, Iasiello M, Langella G, Bianco N. Increasing melting and solidification performances of a phase change material-based flat plate solar collector equipped with metal foams, nanoparticles, and wavy wall-Y-shaped surface. Energy Convers Manag [Internet]. 2023;291:117268. Available from: https://www.sciencedirect.com/science/article/pii/S0196890423006143