بررسی مکانیکی آسیب ضربه وارد بر مغز انسان در اثر برخورد توپ فوتبال با کمک مدل سه بعدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

چکیده

ضربه مغزی یکی از شایع­ترین آسیب­هایی است که جان انسان را تهدید می‌کند که در فوتبال نیز دیده می‌شود. در این پژوهش یک مدل المان محدود از ضربه مغزی ارائه شده است که در آن بافت مغز به صورت هایپر ویسکوالاستیک غیرخطی با همسانگردی عرضی بر اساس مدل مونی-ریولین تعریف شد. مدل سه‌بعدی مغز از تصاویر MRI استخراج شد و شبیه‌سازی المان محدود در نرم‌افزار LS-DYNA صورت گرفت. نتایج نشان داد که در ضربه از ناحیه جانبی، فشار و نیروی وارده سریع‌تر گسترش‌ می‌یابد و مغز دچار آسیب شدیدتری می‌شود. همچنین، نشان داده شد که در صورت متعامد بودن جهت ضربه با جهت‌گیری فیبرهای آکسون، بافت مغز تنش بیشتری را تجربه می‌کند. علاوه بر این، مشاهده شد که در ضربه جلویی که فیبرهای آکسون هم‌راستا با جهت ضربه قرار دارند به دلیل تغییر شکل بزرگ مغز، فشار در محل آسیب مثبت و در محل مقابل آسیب منفی می‌شود. در ضربه جانبی که متعامد بر فیبرها بود، رفتار فشار محل آسیب و مقابل آسیب مشابه بود.

کلیدواژه‌ها

موضوعات


[1]           ایمانی نژاد ز، خلیلی خ. مروری بر پرکاربردترین مدل‌های اسکلتی-عضلانی اندام تحتانی جهت شبیه‌سازی حرکت اسکات در OpenSim. مهندسی مکانیک دانشگاه تبریز. 1402، د. 53، ش. 2، ص. 79-88.
[2]           عبیدی م، هیات حسینیان س، سهیلی فرد ر، حسن زاده قاسمی ر. مقایسه وابستگی اتصال ترکیبات سیاه‌دانه و شیرین بیان با رمدسیویر بر Mpro  سارس کرونا ویروس2 با استفاده از شبیه سازی دینامیک مولکولی هدایت شده. مهندسی مکانیک دانشگاه تبریز. 1402، د. 53، ش. 3، ص. 173-178.
[3]           نمه شیری پ، اللهوردی زاده ا، داداش زاده ب. مدل‌سازی الکترومکانیکی تنگی دریچه آئورتی با خواص هایپرالاستیک و ویسکوالاستیک میوکاردیوم. مهندسی مکانیک دانشگاه تبریز. 1402، د. 53، ش. 2، ص. 155-164.
[4]           Drake R, Vogl AW, Mitchell AW, Tibbitts R, Richardson P. Gray's Atlas of Anatomy E-Book. Elsevier Health Sciences; 2020.
[5]           Madhukar A, Ostoja-Starzewski M. Finite element methods in human head impact simulations: a review. Annals of biomedical engineering. 2019;47:1832-54.
[6]           Drake RL, Vogl AW, Mitchell AW. Gray's anatomy for students flash cards e-book. Elsevier Health Sciences; 2019.
[7]           de Rooij R, Kuhl E. Constitutive modeling of brain tissue: current perspectives. Applied Mechanics Reviews. 2016;68(1).
[8]           Chatelin S, Deck C, Willinger R. An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling. Journal of biorheology. 2013;27:26-37.
[9]           Wang F, Han Y, Wang B, Peng Q, Huang X, Miller K, Wittek A. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model. Biomechanics and Modeling in Mechanobiology. 2018;17:1165-85.
[10]         Eslaminejad A, Hosseini Farid M, Ziejewski M, Karami G. Brain tissue constituive material models and the finite element analysis of blast-induced traumatic brain injury. Scientia Iranica. 2018;25(6: Special Issue Dedicated to Professor Goodarz Ahmadi):3141-50.
[11]         Hosseini-Farid M, Amiri-Tehrani-Zadeh M, Ramzanpour M, Ziejewski M, Karami G. The strain rates in the brain, brainstem, dura, and skull under dynamic loadings. Mathematical and Computational Applications. 2020;25(2):21.
[12]         Wu T, Hajiaghamemar M, Giudice JS, Alshareef A, Margulies SS, Panzer MB. Evaluation of tissue-level brain injury metrics using species-specific simulations. Journal of neurotrauma. 2021;38(13):1879-88.
[13]         Tse KM, Lim SP, Tan VBC, Lee HP. A review of head injury and finite element head models. American Journal of Engineering, Technology and Society. 2014;1(5):28-52.
[14]         Bruneau DA, Cronin DS. Brain response of a computational head model for prescribed skull kinematics and simulated football helmet impact boundary conditions. Journal of the mechanical behavior of biomedical materials. 2021;115:104299.
[15]         Li H, Lu R-J, Wu P, Yuan Y, Yang S, Zhang F-F, Jiang J, Tan Y. Numerical simulation and analysis of midfacial impacts and traumatic brain injuries. Annals of translational medicine. 2021;9(6).
[16]         Perkins RA, Bakhtiarydavijani A, Ivanoff AE, Jones M, Hammi Y, Prabhu RK. Assessment of brain injury biomechanics in soccer heading using finite element analysis. Brain Multiphysics. 2022;3:100052.
[17]         Pavan PG, Nasim M, Brasco V, Spadoni S, et al. Development of detailed finite element models for in silico analyses of brain impact dynamics. Computer Methods and Programs in Biomedicine. 2022;227:107225.
[18]         Carmo GP, Dymek M, Ptak M, Alves-de-Sousa RJ, Fernandes FA. Development, validation and a case study: The female finite element head model (FeFEHM). Computer Methods and Programs in Biomedicine. 2023;231:107430.
[19]         Hosseini-Farid M, Ramzanpour M, Ziejewski M, Karami G. A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters. International Journal of Non-Linear Mechanics. 2019;116:147-54.
[20]         Goldsmith W, Plunkett J. A biomechanical analysis of the causes of traumatic brain injury in infants and children. The American journal of forensic medicine and pathology. 2004;25(2):89-100.
[21]         Karimi A, Razaghi R, Navidbakhsh M, Sera T, Kudo S. Measurement of the mechanical properties of soccer balls using digital image correlation method. Sport Sciences for Health. 2016;12:69-76.
[22]         Griffiths E, Budday S. Finite element modeling of traumatic brain injury: Areas of future interest. Current Opinion in Biomedical Engineering. 2022;24:100421.
[23]         Miller LE, Urban JE, Kelley ME, Powers AK, Whitlow CT, Maldjian JA, Rowson S, Stitzel JD. Evaluation of brain response during head impact in youth athletes using an anatomically accurate finite element model. Journal of neurotrauma. 2019;36(10):1561-70.
[24]         Hosseini-Farid M, Ramzanpour M, Eslaminejad A, Ziejewski M, Karami G. Computational simulation of brain injury by golf ball impacts in adult and children. Biomedical Sciences Instrumentation. 2018;54(1):369-76.
[25]         Hassan M, Taha Z, Hasanuddin I, Majeed A, Mustafa H, Othman N. A simplified human head finite element model for brain injury assessment of blunt impacts. Journal of Mechanical Engineering and Sciences. 2020;14(2):6538-47.
[26]         Ramzanpour M, Eslaminejad A, Hosseini-Farid M, Ziejewski M, Karami G. Comparative study of coup and contrecoup brain injury in impact induced TBI. Biomedical Sciences Instrumentation. 2018;54(1):76-82.
[27]         Tiernan S, Byrne G. The effect of impact location on brain strain. Brain injury. 2019;33(4):427-34.
[28]         Zhang L, Yang KH, King AI. Comparison of brain responses between frontal and lateral impacts by finite element modeling. Journal of neurotrauma. 2001;18(1):21-30.
[29]         Bunc G, Ravnik J, Velnar T. May heading in soccer result in traumatic brain injury? A review of literature. Medical Archives. 2017;71(5):356.
[30]         El Sayed T, Mota A, Fraternali F, Ortiz M. Biomechanics of traumatic brain injury. Computer Methods in Applied Mechanics and Engineering. 2008;197(51-52):4692-701.
[31]         Lyu D, Zhou R, Lin C-h, Prasad P, Zhang L. Development and validation of a new anisotropic visco-hyperelastic human head finite element model capable of predicting multiple brain injuries. Frontiers in Bioengineering and Biotechnology. 2022;10:831595.
[32]         Liu J, Jin JJ, Eckner JT, Ji S, Hu J. Influence of morphological variation on brain impact responses among youth and young adults. Journal of biomechanics. 2022;135:111036.
[33]         Nahum AM, Smith R, Ward CC. Intracranial pressure dynamics during head impact. SAE Technical Paper; 1977. Report No.: 0148-7191.
[34]         Cai Z, Xia Y, Bao Z, Mao H. Creating a human head finite element model using a multi-block approach for predicting skull response and brain pressure. Computer methods in biomechanics and biomedical engineering. 2019;22(2):169-79.
[35]         Anssari-Benam A, Destrade M, Saccomandi G. Modelling brain tissue elasticity with the Ogden model and an alternative family of constitutive models. Philosophical Transactions of the Royal Society A. 2022;380(2234):20210325.
[36]         Ratajczak M, Ptak M, Chybowski L, Gawdzińska K, Będziński R. Material and structural modeling aspects of brain tissue deformation under dynamic loads. Materials. 2019;12(2):271.