[1] Ebrahimi M, Par MA. Twenty-year uninterrupted endeavor of friction stir processing by focusing on copper and its alloys. Journal of Alloys and Compounds. 2019;781:1074-1090.
[2] Elyasi M, Derazkola HA, Hoseinzadeh M. Study on joint zone Microstructure Evolution and Hardness in Friction Stir welding of AA1100 Aluminum alloy to A441 AISI steel. Modares Mechanical Engineering. 2015; 14(14):97-107.
[3] Elyasi M, Aghajani H, Hosseinzadeh M. Effects of friction stir welding parameters on mechanical quality of AA1100 aluminum alloy to A441 AISI steel joint. Modares Mechanical Engineering. 2015; 15(4):379-390.
[4] Zykova AP, Tarasov SY, Chumaevskiy AV, Kolubaev EA. A review of friction stir processing of structural metallic materials: Process, properties, and methods. Metals. 2020;10(6):772.
[5] Derazkola HA, Aval HJ, Elyasi M. Analysis of process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steel. Science and Technology of Welding and Joining. 2015; 20(7):553-562.
[6] Derazkola HA, Elyasi M. The influence of process parameters in friction stir welding of Al-Mg alloy and polycarbonate. Journal of Manufacturing Processes. 2018; 35:88-98.
[7] Elyasi M, Derazkola HA. Experimental and thermomechanical study on FSW of PMMA polymer T-joint. The International Journal of Advanced Manufacturing Technology. 2018; 97(1):1445-1456.
[8] Eyvazian A, Hamouda AM, Aghajani Derazkola H, Elyasi M. Study on the effects of tool tile angle, offset and plunge depth on friction stir welding of poly (methyl methacrylate) T-joint. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2020; 234(4):773-787.
[9] Ghahreman H, Ebrahimi M, Oskui A.E, Zadshakoyan M. Mode I fracture behavior of 6061 aluminum alloy processed by friction stir processing. Journal of Aerospace Mechanics. 2023; 19(2):83-94.
[10] Eshaghi Oskui A, Haddadi E, Ebrahimi M. A technical approach toward pre-crack generation and its effect on the fracture behavior of polymeric materials. Engineering Fracture Mechanics. 2022; 15(274):108780.
[11] Babaei Molke Talesh R, Mashhadi Keshtiban P, Eshaghi Oskui A. Investigation of mode-I fracture behavior by essential work of fracture during the single-point incremental forming process. Engineering Failure Analysis. 2023; 154: 107677.
[12] Barany T, Czigány T, Karger-Kocsis J. Application of the essential work of fracture (EWF) concept for polymers, related blends and composites: A review. Progress in Polymer Science. 2010; 35(10):1257-1287.
[13] Oskui AE, Soltani N. Experimental and numerical investigation of the effect of temperature on mixed-mode fracture behaviour of AM60 Mg alloy. Fatigue & Fracture of Engineering Materials & Structures. 2019; 42(10):2354-2371.
[14] Haddadi E, Choupani N, Abbasi F. Experimental and numerical investigation of mode II fracture toughness of rubber-toughened polymethyl methacrylate by using the essential fracture work. Modares Mechanical Engineering. 2016; 16(3):132-140.
[15] Oskui AE, Soltani N. Experimental and numerical investigation of the effect of temperature on mixed‐mode fracture behaviour of AM60 Mg alloy. Journal of Materials Science. 2019; 42(10): 2354-2371.
[16] Gairola S, Jayaganthan R. XFEM Simulation of Tensile and Fracture Behavior of Ultrafine-Grained Al 6061 Alloy. Metals. 2021; 11(11):1761.
[17] Yazdi SR, Beidokhti B, Haddad-Sabzevar M. Pinless tool for FSSW of AA 6061-T6 aluminum alloy. Journal of materials processing technology. 2019; 267:44-51.
[18] Ebrahimi M, Wang, Q, Attarilar Sh. A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Progress in Materials Science. 2023; 131:101016.
[19] Ebrahimi M, Shaeri MH, Gode C, Armoon H, Shamsborhan M. The synergistic effect of dilute alloying and nanostructuring of copper on the improvement of mechanical and tribological response. Composites Part B: Engineering. 2019; 164:508-516.
[20] Malopheyev S, Vysotskiy I, Zhemchuzhnikova D, Mironov S, Kaibyshev R. On the fatigue performance of friction-stir welded aluminum alloys. Materials. 2020; 13(19):4246.
[21] Attarilar Sh, Djavanroodi F, Ebrahimi M, Al-fadhalah Kh, Wang L, Mozafari M. Hierarchical microstructure tailoring of pure titanium for enhancing cellular response at tissue-implant interface. Journal of Biomedical Nanotechnology. 2021; 17(1):115-130.
[22] Derazkola HA, Kordani N, Derazkola HA. Effects of friction stir welding tool tilt angle on properties of Al-Mg-Si alloy T-joint. CIRP Journal of Manufacturing Science and Technology. 2021; 33:264-276.
]23[ آقاجانی، حسام. کردانی، ناصر. آقاجانی دارزکلا، حامد. (1399). تحلیل اثر سرعت خطی و دورانی ابزار جوشکاری اصطکاکی اغتشاشی بر جریان مواد اتصال T شکل آلیاژ آلومینیوم 6061. مهندسی مکانیک دانشگاه تبریز، 50(1)، 1-8. doi: 10.22034/jmeut.2020.9558
]24[ قصاب زاده چرندابی، امیر. ابراهیمی، محمود. اسحقی اسکویی، ابوذر. زادشکویان، محمد. (1402). بررسی تأثیر فرایند اصطکاکی-اغتشاشی بر رفتار شکست آلومینیوم آلیاژی 6061 تحت بارگذاری برشی خالص. مهندسی مکانیک دانشگاه تبریز، 53(2)، 147-154.doi: 10.22034/jmeut.2023.55286.3232