در این مقاله یک طرح کنترلی مد لغزشی مبتنی بر شبکه عصبی برای کنترل بازوی رباتیک ماهر با در نظر گرفتن اشباع عملگر و در حضور اغتشاشهای خارجی پیشنهاد میگردد. در رهیافت کنترلی پیشنهادی از شبکه عصبی چبیشف نوع دوم برای جبران اثرات مخرب اشباع عملگر بهره گرفته شده است. سیستم حلقه بسته با استفاده از کنترلکننده پیشنهادی دارای قابلیت همگرایی سریع، خطای ردیابی کوچک، تقاوم و عملکرد مناسب در حضور اشباع عملگر و اغتشاشهای خارجی است. وزنهای شبکه عصبی با بهرهگیری از تئوری لیاپانوف استخراج شده و پایداری سیستم به اثبات رسانده میشود. عملکرد کنترلکننده پیشنهادی با سایر کنترلکنندهها مورد قیاس قرار گرفته و کارایی آن در سناریوهای مختلف به ازای مسیرهای مختلف و حضور اغتشاشهای خارجی مورد ارزیابی قرار میگیرد.
Ding S, Peng J, Zhang H, Wang Y. Neural network-based adaptive hybrid impedance control for electrically driven flexible-joint robotic manipulators with input saturation. Neurocomputing. 2021;458:99-111.
Pillai R, Sivathanu B, Mariani M, Rana NP, Yang B, Dwivedi YK. Adoption of AI-empowered industrial robots in auto component manufacturing companies. Production Planning & Control. 2022;33(16):1517-33.
Yao W, Guo Y, Wu Y-F, Guo J. Robust Adaptive Dynamic Surface Control of Multi-link Flexible Joint Manipulator with Input Saturation. International Journal of Control, Automation and Systems. 2022;20(2):577-88.
Caiza G, Garcia CA, Naranjo JE, Garcia MV. Flexible robotic teleoperation architecture for intelligent oil fields. Heliyon. 2020;6(4):e03833.
Wang XV, Wang L. A literature survey of the robotic technologies during the COVID-19 pandemic. Journal of Manufacturing Systems. 2021;60:823-36.
Belanche D, Casaló LV, Flavián C. Frontline robots in tourism and hospitality: service enhancement or cost reduction? Electronic Markets. 2021;31(3):477-92.
Spong MW, Hutchinson S, Vidyasagar M. Robot modeling and control: John Wiley & Sons; 2020.
Sai H, Xu Z, He S, Zhang E, Zhu L. Adaptive nonsingular fixed-time sliding mode control for uncertain robotic manipulators under actuator saturation. ISA Transactions. 2022;123:46-60.
Min H, Xu S, Ma Q, Zhang B, Zhang Z. Composite-Observer-Based Output-Feedback Control for Nonlinear Time-Delay Systems With Input Saturation and Its Application. IEEE Transactions on Industrial Electronics. 2018;65(7):5856-63.
Sun Y, Liu J, Gao Y, Liu Z, Zhao Y. Adaptive Neural Tracking Control for Manipulators With Prescribed Performance Under Input Saturation. IEEE/ASME Transactions on Mechatronics. 2023;28(2):1037-46.
Shao K, Zheng J, Tang R, Li X, Man Z, Liang B. Barrier Function Based Adaptive Sliding Mode Control for Uncertain Systems With Input Saturation. IEEE/ASME Transactions on Mechatronics. 2022;27(6):4258-68.
Yu Z, Qu Y, Zhang Y. Distributed Fault-Tolerant Cooperative Control for Multi-UAVs Under Actuator Fault and Input Saturation. IEEE Transactions on Control Systems Technology. 2019;27(6):2417-29.
Zhu G, Ma Y, Li Z, Malekian R, Sotelo M. Event-Triggered Adaptive Neural Fault-Tolerant Control of Underactuated MSVs With Input Saturation. IEEE Transactions on Intelligent Transportation Systems. 2022;23(7):7045-57.
Sun W, Wu Y, Lv X. Adaptive Neural Network Control for Full-State Constrained Robotic Manipulator With Actuator Saturation and Time-Varying Delays. IEEE Transactions on Neural Networks and Learning Systems. 2022;33(8):3331-42.
Ouyang D, Shao J, Jiang H, Nguang SK, Shen HT. Impulsive synchronization of coupled delayed neural networks with actuator saturation and its application to image encryption. Neural Networks. 2020;128:158-71.
Yuan Y, Wang Z, Yu Y, Guo L, Yang H. Active disturbance rejection control for a pneumatic motion platform subject to actuator saturation: An extended state observer approach. Automatica. 2019;107:353-61.
Khamar M, Edrisi M, Forghany S. Designing a robust controller for a lower limb exoskeleton to treat an individual with crouch gait pattern in the presence of actuator saturation. ISA Transactions. 2022;126:513-32.
Gerber MJ, Pettenkofer M, Hubschman J-P. Advanced robotic surgical systems in ophthalmology. Eye. 2020;34(9):1554-62.
Chen T, Shan J, Wen H. Distributed Attitude Consensus of Multiple Flexible Spacecraft: Springer Nature; 2022.
Qin H, Chen X, Sun Y. Adaptive state-constrained trajectory tracking control of unmanned surface vessel with actuator saturation based on RBFNN and tan-type barrier Lyapunov function. Ocean Engineering. 2022;253:110966.
Kong L, He W, Yang W, Li Q, Kaynak O. Fuzzy Approximation-Based Finite-Time Control for a Robot With Actuator Saturation Under Time-Varying Constraints of Work Space. IEEE Transactions on Cybernetics. 2021;51(10):4873-84.
Cai Z. ROBOTICS: From Manipulator to Mobilebot: World Scientific; 2022.
Chang W, Tong S, Li Y. Adaptive fuzzy backstepping output constraint control of flexible manipulator with actuator saturation. Neural Computing and Applications. 2017;28(1):1165-75.
Lyu X, Lin Z. PID Control of Planar Nonlinear Uncertain Systems in the Presence of Actuator Saturation. IEEE/CAA Journal of Automatica Sinica. 2022;9(1):90-8.
Hu X, Wei X, Zhang H, Han J, Liu X. Robust adaptive tracking control for a class of mechanical systems with unknown disturbances under actuator saturation. International Journal of Robust and Nonlinear Control. 2019;29(6):1893-908.
Shao K, Tang R, Xu F, Wang X, Zheng J. Adaptive sliding mode control for uncertain Euler–Lagrange systems with input saturation. Journal of the Franklin Institute. 2021;358(16):8356-76.
Milovanović MB, Antić DS, Milojković MT, Spasić MD. Adaptive Control of Nonlinear MIMO System With Orthogonal Endocrine Intelligent Controller. IEEE Transactions on Cybernetics. 2022;52(2):1221-32.
Qin J, Du J. Minimum-learning-parameter-based adaptive finite-time trajectory tracking event-triggered control for underactuated surface vessels with parametric uncertainties. Ocean Engineering. 2023;271:113634.
Moayedi H, Mosallanezhad M, Rashid ASA, Jusoh WAW, Muazu MA. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications. 2020;32(2):495-518.
Gholipour R, Fateh MM. Robust Control of Robotic Manipulators in the Task-Space Using an Adaptive Observer Based on Chebyshev Polynomials. Journal of Systems Science and Complexity. 2020;33(5):1360-82.
Wang Z, Fei J. Fractional-Order Terminal Sliding-Mode Control Using Self-Evolving Recurrent Chebyshev Fuzzy Neural Network for MEMS Gyroscope. IEEE Transactions on Fuzzy Systems. 2022;30(7):2747-58.
Marugán AP, Márquez FPG, Perez JMP, Ruiz-Hernández D. A survey of artificial neural network in wind energy systems. Applied Energy. 2018;228:1822-36.
Ametrano CG, Knudsen K, Kocourková J, Grube M, Selbmann L, Muggia L. Phylogenetic relationships of rock-inhabiting black fungi belonging to the widespread genera Lichenothelia and Saxomyces. Mycologia. 2019;111(1):127-60.
Chittora P, Singh A, Singh M. Chebyshev Functional Expansion Based Artificial Neural Network Controller for Shunt Compensation. IEEE Transactions on Industrial Informatics. 2018;14(9):3792-800.
Hu Y, Yan H, Zhang H, Wang M, Zeng L. Robust Adaptive Fixed-Time Sliding-Mode Control for Uncertain Robotic Systems With Input Saturation. IEEE Transactions on Cybernetics. 2023;53(4):2636-46.
Zhang S, Yang P, Kong L, Chen W, Fu Q, Peng K. Neural Networks-Based Fault Tolerant Control of a Robot via Fast Terminal Sliding Mode. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2021;51(7):4091-101.
Baek J, Jin M, Han S. A New Adaptive Sliding-Mode Control Scheme for Application to Robot Manipulators. IEEE Transactions on Industrial Electronics. 2016;63(6):3628-37.
Yu X, Feng Y, Man Z. Terminal Sliding Mode Control – An Overview. IEEE Open Journal of the Industrial Electronics Society. 2021;2:36-52.
Yao Q. Adaptive trajectory tracking control of a free-flying space manipulator with guaranteed prescribed performance and actuator saturation. Acta Astronautica. 2021;185:283-98.
Purwar S, Kar IN, Jha AN. On-line system identification of complex systems using Chebyshev neural networks. Applied Soft Computing. 2007;7(1):364-72.
Wang B, Jahanshahi H, Dutta H, Zambrano-Serrano E, Grebenyuk V, Bekiros S, et al. Incorporating fast and intelligent control technique into ecology: A Chebyshev neural network-based terminal sliding mode approach for fractional chaotic ecological systems. Ecological Complexity. 2021;47:100943.
Chakraverty S, Mall S. Artificial neural networks for engineers and scientists: solving ordinary differential equations: CRC Press; 2017.
Ruiz I, Zeron M. Machine Learning for Risk Calculations: A Practitioner's View: Wiley; 2021.
فروتن, علی و صفا, علیرضا . (1403). طراحی کنترلکننده مد لغزشی برای کنترل بازوی رباتیک ماهر غیرخطی با در نظر گرفتن اشباع عملگرها. مهندسی مکانیک دانشگاه تبریز, 54(2), 137-146. doi: 10.22034/jmeut.2024.60141.3369
MLA
فروتن, علی , و صفا, علیرضا . "طراحی کنترلکننده مد لغزشی برای کنترل بازوی رباتیک ماهر غیرخطی با در نظر گرفتن اشباع عملگرها", مهندسی مکانیک دانشگاه تبریز, 54, 2, 1403, 137-146. doi: 10.22034/jmeut.2024.60141.3369
HARVARD
فروتن, علی, صفا, علیرضا. (1403). 'طراحی کنترلکننده مد لغزشی برای کنترل بازوی رباتیک ماهر غیرخطی با در نظر گرفتن اشباع عملگرها', مهندسی مکانیک دانشگاه تبریز, 54(2), pp. 137-146. doi: 10.22034/jmeut.2024.60141.3369
CHICAGO
علی فروتن و علیرضا صفا, "طراحی کنترلکننده مد لغزشی برای کنترل بازوی رباتیک ماهر غیرخطی با در نظر گرفتن اشباع عملگرها," مهندسی مکانیک دانشگاه تبریز, 54 2 (1403): 137-146, doi: 10.22034/jmeut.2024.60141.3369
VANCOUVER
فروتن, علی, صفا, علیرضا. طراحی کنترلکننده مد لغزشی برای کنترل بازوی رباتیک ماهر غیرخطی با در نظر گرفتن اشباع عملگرها. مهندسی مکانیک دانشگاه تبریز, 1403; 54(2): 137-146. doi: 10.22034/jmeut.2024.60141.3369