شبیه‌سازی فرایندهای انجماد و ذوب برای کاربرد در سیستم‌های ذخیره انرژی نهان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه ارومیه

2 استاد، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

چکیده

در مقاله حاضر فرایندهای ذوب و انجماد PCM در یک مخزن مستطیلی پره‌دار در حضور همرفت طبیعی و به همراه شرایط مرزی زمان‌مند، مورد مطالعه قرار می‌گیرد. بدین منظور دو مدل عددی بر اساس روش‌های آنتالپی و ردگیری جبهه و در قالب روش بولتزمن شبکه‌ای جهت شبیه‌سازی فرایند تغییر فاز توسعه داده می‌شود. به منظور تجزیه و تحلیل اطلاعات از نرم افزار Fluent استفاده می‌شود. نتایج پژوهش نشان می‌دهد که تغییر شکل هندسی ایجاد شده در مبادله‌کن‌دو‌لوله‌ای ساده تأثیر مثبت نداشته و نمی‌تواند  مشکل ذوب نشدن پارافین‌های جامد باقی مانده در نیمه‌پایینی فضای حلقوی، پس از اتمام فرآیند ذوب را حل کند. در دمای  ٩/٦٩ ذخیره سازی انرژی با شدت مناسبی انجام می شود اما بعد از این زمان شیب نمودارهای مربوط به ذخیره سازی انرژی گرمایی و کسر پارافین ذوب شده کم می شود. پس زمان ٦٠ دقیقه برای عدد رایلی 10٦×٠٩/١زمانی خاص است در این مطالعه به این زمان خاص زمان آستانه گفته می‌شود در صورتی که برای اعداد رایلی ١06 ×٦٧/١ زمان آستانه 50 دقیقه می باشد.

کلیدواژه‌ها

موضوعات


  •      Maxwell JC. A Treatise on Electricity and Magnetism second ed. Oxford University Press, Cambridge, 1 1904: 435–441.
  • Hamilton RL and Crosser OK. Thermal Conductivity of Heterogeneous two Component Systems Industrial and Engineering Chemistry Fundamentals. 1962: 187-191.
  • Wasp EJ, Kenny JP and Gandhi Solid – Liquid Flow Slurry Pipeline Transportation Series on Bulk Materials Handling Trans Tech Publications. 1:4, Clausthal Germany, 1977.
  • Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles Netsu Bussei. 7 1993: 227-233.
  • Choi US. Enhancing thermal conductivity of fluids with nanoparticles in Developments and application of non-newtonian flows. ASME, 1995 :99-105.
  • Das SK, Putra P and Roetzel w. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, Transactions of ASME, Journal of Heat Transfer, 121 2003: 567-574.
  • Prakash M, Giannelis E P. Mechanism of Heat Transport in Nanofluids Journal of Computer-Aided Material Design 14,2007: 109-117.
  • Karthikeyan N R, Philip J, Raj B. Effect of Clustering on the Thermal Conductivity of Nanofluids Materials Chemistry and Physics 109 2008: 50-55.
  • Wang X, Xu X, Choi S U S. Thermal Conducivity of Nanoparticle-Fluid Mixture. Journal of Thermophysics and Heat Transfer 13 1999: 474-480.
  • Jang S P, Choi S U S. Effects of Various Parameters on Nanofluid Thermal Conductivity. ASME Journal of Heat Transfer 129 , 2007: 617-623.
  • Jang S P, Choi S U S. Role of Brownian Motion in the Enhanced Thermal conductivity of Nanofluids Applied Physics Letters. 84 ,2004: 4316-4318.
  • Chon C H, Kihm K D, Lee S P, Choi S U S. Empirical Correlation Finding the role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement, Applied Physics Letters 87, 2005: 153107.
  • Prasher R, Bhattacharya P, Phelan P E. Brownian-Motion-Based Convective-Conductive Model or the Effective Thermal Conductivity of Nanofluids, ASME Journal of Heat Transfer 128, 2006: 588-595.
  • Yu W, France D M, Routbort J L, Choi S U S. Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements Heat Transfer Engineering 29, 2008: 432-460.
  • Yu C J, Richter, A G, Datta A, Durbin M K, Dutta P. Observation of Molecular Layering in Thin Liquid Films Using X-Ray Reflectivity, Physical Review Letters 82,1999: 2326-2329.
  • He J, Yang X & Zhang G. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management. Applied Thermal Engineering, 148, 2019: 984-991.
  • Fan R, Zheng N & Sun Z. Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery modules. International Journal of Heat and Mass Transfer, 166, 2021:120753.
  • Yan X, Zhao H., Feng, Y, Qiu L, Lin L, Zhang X & Ohara T. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials. Composites Part B: Engineering, 228, 2022:109435.
  • Agrawal R, Singh K D P & Sharma R K. Experimental investigations on the phase change and thermal properties of nano enhanced binary eutectic phase change material of palmitic acid‐stearic acid/CuO nanoparticles for thermal energy storage. International Journal of Energy Research, 46(5), 2022:6562-6576.
  • Lo DC, Young DL, Tsai CC. High resolution of 2D natural convection in a cavity by the DQ method 203 2007: 219 – 236.
  • Panisilvam J, Wang P C & Tay N H S. Numerical validation and assessment of vertical and horizontal latent heat energy storage system during a melting process. Journal of Energy Storage, 72,2023: 108267.
  • Amidu M A, Ali M, Alkaabi A K & Addad Y. A critical assessment of nanoparticles enhanced phase change materials (NePCMs) for latent heat energy storage applications. Scientific Reports, 13,2023: 7829.
  • Hassaballa A A, Basem A, AL-bonsrulah H A, Dahshan, N M, Almarashi A, Abd Elmotaleb A M A & Qahiti R. Transient modeling of storage of cold energy in existence of nano-sized additives. Journal of Energy Storage, 92,2024: 112216.
  • Khuda M A, Yan L, Sarunac N & Romero C. Design, analysis and testing of a prototype-scale latent heat thermal energy storage (LTES) system. Journal of Energy Storage, 89,2024: 111796.