[1] Smith J. Combustion Aerodynamics and Swirling Combustion Processes. A Comprehensive Review; Journal of Energy Research. 2023.Vol. 45, pp. 217-231.
[2] Gupta A, Lilley D, Syreed N. Influence of Rotating Speed Ratio on the Annular Turbulent Flow between Two Rotating Cylinders. Journal of Modern Physics. 2013.Vol. 170, pp. 525-799.
[3] Syred N, Beer JM. Combustion in Swirling Flows Review. Combustion and Flame. 1974.Vol. 23, pp. 143-201.
[4] Chigier NA. Gas dynamics of Swirling Flow in Combustion Systems. Astronautic Acta. 1972.Vol. 17, pp. 387-395.
[5] Haworth DC, Pope SB. Combustor Design and Analysis for Swirl Stabilized Flames. Combustion Science and Technology. 1986. Vol. 47, pp. 315-347.
[6] Janicka J, Wörner A. CFD Modeling of Turbulent Combustion in Swirl Stabilized Gas Burners. Combustion and Flame. 2001. Vol. 125, pp. 141-161.
[7] Putnam AA. Swirl Burning. American Flame Research Committee. 1967 Jan.
[8] Turns SR. An Introduction to Combustion; Concepts and Applications. McGraw-Hill Education. 2021. Resource Type: Book.
[9] Hansen J. Global Climate Changes as Forecast. Goddard Institute for Space Studies. 1988. Vol. 93, pp. 9341-9364.
[10] Jacobson MZ. Review of Solutions to Global Warming; Air Pollution and Energy Security. Energy and Environmental Science. 2009.
[11] Horn M. Lean Combustion. technology and Control. 2019 Jul. Resource Type: Book.
[12] Gupta AK, Lilley D. Swirl Flows and Combustion. 1984 Jan. Resource Type: Book.
[13] Pulkrabek W. Engineering Fundamentals of the Internal Combustion Engine. 2003. Resource Type: Book.
[14] Cheng RK, Marble FE. Numerical study of flame stability; stabilization and noise in a swirl-stabilized combustor under choked conditions. Fluid Dynamics. 2015.
[15] Lieuwen T, Yang V. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling. American Institute of Aeronautics and Astronautics Inc. 2005.
[16] Ghoniem AF, Gupta AK. non-premixed turbulent combustion. Applied Thermal Engineering. 2013. Vol. 110, pp. 665-677.
[17] Plessing T. Measurement of the Turbulent Burning Velocity and the Structure of Premixed Flames on a Low Swirl Burner. Proc. Combustion Inst. 2000. Vol.28, pp.359-366.
[18] Shepherd IG, Cheng RK. Premixed Flame Front Structure in Intense Turbulence. Combustion Inst. 1996. Vol. 29, pp.1833-1840.
[19] Cheng RK. Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized by Weak Swirl. Combustion and Flame. 1995. Vol.101, pp.1-14.
[20] Dunn Rankin D. Lean Combustion Technology and Control. USA Elsevier, 2008. Resource Type: Book.
[21] نحوی، مظاهری، پارسافر، محمدپور. تجزیه و تحلیل تجربی اثر انسداد بر پارامترهای احتراق مشعل کمچرخش برای شعلههای گاز طبیعی و هوا پیشآمیخته فقیر از سوخت. هجدهمین کنفرانس دینامیک سیالات، مشهد، 1398.
[22] فرشچی م، توحید. بررسی تجربی انتشار گازهای گلخانهای کمچرخش پیشآمیخته فقیر از سوخت. مجموعه مقالات سومین کنفرانس سوخت و احتراق موسسه احتراق ایران، 22 بهمن 1389، تهران، ایران، دانشگاه امیرکبیر، 1388.
[23] Johnson MR, Littlejohn D, Nazeer WA, Rapp VH., Cheng RK. A Comparison of the Flow fields and Emissions of High-swirl Injectors and Low-swirl Injectors for Lean Premixed Gas Turbines. Proc. Combustion Inst. 2005. Vol. 30, pp.2867-2874.
[24] Yegian DT, Cheng RK. Stability characteristics and emission levels of a laboratory hot water heater utilizing a weak-swirl burner. American Flame Research Council Fall International Symposium, Berkeley, California, USA. 1995.
[25] Cheng RK, Yegian DT. Mechanical Swirler for a Low-NOx Weak-Swirl Burner, U.S. Patent. 1999.
[26] Yegian DT, Cheng RK. Development of a Vane-Swirler for Use in a Low NOx Weak-Swirl Burner. American Flame Research Committee International Symposium, Baltimore. 1996.
[27] Yegian DT, Cheng Rk. Scaling the Low Swirl Burner from 15kw to 600kw. American Japanese Flame Research Committee International symposium. 1998.
[28] Beer JM, Chigier NA. Combustion Aerodynamics. Halsted-Wiley, New York. 1972.
[29]Cheng RK, Yegian DT, Miyasato MM, Samuelsen GS, Benson CE, Pellizzari R, Loftus P. Scaling and Development of Low-Swirl Burners for Low-Emission Furnaces and Boilers. Proceedings of the Combustion Institute. 2000. Vol. 28, pp. 1305-1313.
[30] حشمتی، میرساجدی. بررسی تجربی تاثیر نسبت انسداد انژکتور کمچرخش بر حدود پایداری و رژیمهای احتراق شعله گاز طبیعی. کنفرانس سوخت و احتراق، موسسه احتراق ایران، دانشگاه شهید بهشتی، تهران، ایران، 1399.
[31] ناصریپور طوسی، میرساجدی. بررسی تاثیر صفحات مغشوش کننده متفاوت با نسبت انسداد یکسان در یک شعله پیشآمیخته کمچرخش. مجله علمی-پژوهشی مؤسسه احتراق ایران، اردیبهشت 1402.
[32] ناصریپور طوسی، میرساجدی. تاثیر افزایش تعداد پره های چرخاننده کمچرخش بر میدان جریان و رژیم شعله در یک شعله پیشآمیخته فقیر از سوخت. بیست و یکمین کنفرانس بین المللی انجمن هوافضای ایران. دانشگاه علم و صنعت ایران، بهمن ۱۳۹۲.