[1] Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi A-G. Advances in stationary and portable fuel cell applications. International journal of hydrogen energy. 2016;41(37):16509–22.
[2] Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied energy. 2011;88(4):981–1007.
[3] Yan W-M, Li C-H, Lee C-Y, Rashidi S, Li W-K. Numerical study on heat and mass transfer performance of the planar membrane-based humidifier for PEMFC. International Journal of Heat and Mass Transfer. 2020;157:119918.
[4] Huizing R. Design and membrane selection for gas to gas humidifiers for fuel cell applications. University of Waterloo; 2007.
[5] Wang Y, Wang S, Liu S, Li H, Zhu K. Optimization of reactants relative humidity for high performance of polymer electrolyte membrane fuel cells with co-flow and counter-flow configurations. Energy Conversion and Management. 2020;205:112369.
[6] Amir Hossein A, Ebrahim A, Saeed A. An experimental study on the bubble humidification method of polymer electrolyte membrane fuel cells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 40(12):1508–19.
[7] Alan D. Dynamic modeling of two-phase heat and vapor transfer characteristics in a gas-to-gas membrane humidifier for use in automotive PEM fuel cells. 2009.
[8] Hashemi-Valikboni SZ, Ajarostaghi SSM, Delavar MA, Sedighi K. Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters. Journal of Thermal Analysis and Calorimetry. 2020;141:1687–701.
[9] Sabek S, Tiss F, Chouikh R, Guizani A. Numerical investigation of heat and mass transfer in partially blocked membrane based heat exchanger: effects of obstacles forms. Applied Thermal Engineering. 2018;130:211–20.
[10] Park S-K, Choe S-Y, Choi S. Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications. International Journal of Hydrogen Energy. 2008;33(9):2273–82.
[11] Kang S, Min K, Yu S. Two dimensional dynamic modeling of a shell-and-tube water-to-gas membrane humidifier for proton exchange membrane fuel cell. International journal of hydrogen energy. 2010;35(4):1727–41.
[12] Sabharwal M, Duelk C, Bhatia D. Two-dimensional modeling of a cross flow plate and frame membrane humidifier for fuel cell applications. Journal of Membrane Science. 2012;409:285–301.
[13] Cave P, Merida W. Water flux in membrane fuel cell humidifiers: flow rate and channel location effects. Journal of Power Sources. 2008;175(1):408–18.
[14] Chen C-Y, Su J-H, Ali HM, Yan W-M, Amani M. Effect of channel structure on the performance of a planar membrane humidifier for proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer. 2020;163:120522.
[15] Tan Z, Jia L, Zhang Z. Water vapor transport with condensation in a gas diffusion layer of a proton exchange membrane fuel cell. Heat Transfer Research. 2012;43(2).
[16] Yan W-M, Lee C-Y, Li C-H, Li W-K, Rashidi S. Study on heat and mass transfer of a planar membrane humidifier for PEM fuel cell. International Journal of Heat and Mass Transfer. 2020;152:119538.
[17] Shamsizadeh P, Afshari E. Numerical modeling of a membrane humidifier for mechanical ventilation. International Communications in Heat and Mass Transfer [Internet]. 2022;132:105931.
[18] Yu S, Im S, Kim S, Hwang J, Lee Y, Kang S, et al. A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. International Journal of Heat and Mass Transfer. 2011;54(7–8):1344–51.
[19] Shamsizadeh P, Afshari E, Dehkordi MM. Design of membrane humidifier using obstacles in the flow channels for ventilator. Applied Thermal Engineering. 2021;117265.
[20] Chen C-Y, Chang Y-H, Li C-H, Chang C-C, Yan W-M. Physical properties measurement and performance comparison of membranes for planar membrane humidifiers. International Journal of Heat and Mass Transfer. 2019;136:393–403.
[21] Meng H, Wang C-Y. Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells. Journal of the Electrochemical Society. 2005;152(9):A1733.
[22] Wang Y, Wang C-Y. Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation. Journal of Power Sources. 2005;147(1–2):148–61.
[23] Meng H, Wang C-Y. Electron transport in PEFCs. Journal of the Electrochemical Society. 2004;151(3):A358.
[24] Gurau V, Liu H, Kakac S. Two‐dimensional model for proton exchange membrane fuel cells. AIChE Journal. 1998;44(11):2410–22.
[25] Patankar S. Numerical heat transfer and fluid flow. Taylor & Francis; 2018.
[26] Chen D, Peng H. A Thermodynamic Model of Membrane Humidifiers for PEM Fuel Cell Humidification Control. Journal of Dynamic Systems, Measurement, and Control [Internet]. 2004 Oct 22;127(3):424–32
[27] Masaeli N, Afshari E, Baniasadi E, Baharlou-Houreh N. Performance studies of a membrane-based water and heat exchanger using serpentine flow channels for polymer electrolyte membrane fuel cell application. Applied Thermal Engineering.2023;222:119950.