پیاده‌سازی روش و شناسایی تجربی تابش‌های نورشیمیایی برای مشعل بنسن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، بخش طراحی سیستم‌های احتراق، شرکت مهندسی و ساخت توربین مپنا (توگا)، کرج، ایران

2 استادیار، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران

3 کارشناسی ارشد، مدیریت طراحی توربین گاز، شرکت مهندسی و ساخت توربین مپنا (توگا)، کرج، ایران

چکیده

روش نورشیمیایی یکی از روش­های  نوری شناخته شده و پرکاربرد در زمینه شناسایی سیستم­های احتراقی است. در این پژوهش، سیگنال‌های نورشیمیایی CH* وOH* گونه‌های نشانگر نرخ گرمای آزاد شده، با استفاده از آشکارساز لوله تقویت کننده نور و سایر تجهیزات نوری برای یک مشعل بنسن تحقیقاتی اندازه­گیری شده و همچنین اثر تغییرات نسبت هم­ارزی و دبی جریان بر این سیگنال­ها بررسی شده است. نتایج حاصل نشان می­دهد که با افزایش دبی جریان، سیگنال­های  و به صورت خطی افزایش می­یابند. با تغییر نسبت هم­ارزی نیز مشاهده شد که سیگنال‌های نورشیمیایی در شرایط نزدیک به استوکیومتری بیشینه می­شود. بنابراین این دو گونه را می­توان به عنوان نشانگر آهنگ گرمای آزاد شده در نظر گرفته و از آن جهت یافتن شرایط بهینه کاری برای هر مشعل دلخواه استفاده کرد. همچنین نشان داده شد که سیگنال OH*/CH* مستقل از تغییرات دبی جریان بوده و تنها تحت اثر نسبت هم­ارزی است و رابطه کالیبراسیون بین نسبت هم­ارزی و سیگنال OH*/CH* استخراج گردید. کاربرد روش نورشیمیایی به منظور شناسایی دینامیک سیستم­های احتراقی نیز مورد ارزیابی قرار گرفت. نتایج حاصل نشان می­دهد که شعله پیش­آمیخته آرام دارای یک فرکانس  بیشینه غالب ناشی از گردابه­های کلوین هلمهولتز می­باشد. در شعله­های پیش­آمیخته با افزایش نسبت هم­ارزی فرکانس غالب کاهش یافته و دامنه متناظر با آن افزایش می­یابد. همچنین با افزایش دبی جریان فرکانس ماکزیمم به صورت خطی افزایش یافته و دامنه آن نیز به صورت خطی کاهش می­یابد. نتایج این کار پتانسیل استفاده از روش نورشیمیایی به عنوان ابزاری کارامد در زمینه شناسایی تجربی سیستم­های احتراقی و همچنین جهت کنترل و مانیتورینگ محفظه احتراق رقیق از سوخت و شناسایی پدیده­های دینامیکی احتراق را نشان می­دهد.

کلیدواژه‌ها

موضوعات


  • Gaydon AG, Wolfhard HG. Spectroscopic studies of low-pressure flames; temperature measurements in acetylene flames. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1948 Aug 12;194(1037):169-84.
  • Gaydon AG, Wolfhard HG. Spectroscopic studies of low-pressure flames IV. Measurements of light yield for C2 bands. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1950 May 23;201(1067):570-86.
  • Gaydon AG, Wolfhard HG. Spectroscopic studies of low-pressure flames. II. Effective translational and rotational temperatures from CH bands. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1949 Oct 7;199(1056):89-104.
  • Higgins B, McQuay MQ, Lacas F, Rolon JC, Darabiha N, Candel S. Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel. 2001 Jan 1;80(1):67-74.
  • Akamatsu F, Wakabayashi T, Tsushima S, Katsuki M, Mizutani Y, Ikeda Y, Kawahara N, Nakajima T. The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields. Measurement Science and Technology. 1999 Dec 1;10(12):1240.
  • Hardalupas YL, Orain M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combustion and Flame. 2004 Nov 1;139(3):188-207.
  • Hardalupas Y, Orain M, Panoutsos CS, Taylor AM, Olofsson J, Seyfried H, Richter M, Hult J, Aldén M, Hermann F, Klingmann J. Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK). Applied thermal engineering. 2004 Aug 1;24(11-12):1619-32.
  • Kamal M.M., Two-line (CH∗/CO2∗) chemiluminescence technique for equivalence ratio mapping in turbulent stratified flames. Energy, Vol. 192, p.116485, 2020.
  • Yang J, Gong Y, Guo Q, Zhu H, Wang F, Yu G. Experimental studies of the effects of global equivalence ratio and CO2 dilution level on the OH* and CH* chemiluminescence in CH4/O2 diffusion flames. Fuel. 2020 Oct 15;278:118307.
  • Liu Y, Tan J, Gao Z, Wang T, Wan M. Experimental investigation of chemiluminescence and NOx emission characteristics in a lean premixed dual-swirl flame. Case Studies in Thermal Engineering. 2021 Dec 1;28:101653.
  • Swain W, Wang Y, Parajuli P, Hay M, Saylam A, Dreier T, Schulz C, Kulatilaka W. Characterization of a high-pressure flame facility using high-speed chemiluminescence and OH LIF imaging. Experiments in Fluids. 2023 Apr;64(4):71.
  • Zhu X, Khateeb AA, Roberts WL, Guiberti TF. Chemiluminescence signature of premixed ammonia-methane-air flames. Combustion and Flame. 2021 Sep 1;231:111508.
  • Sun W, Zeng W, Guo L, Zhang H, Yan Y, Lin S, Zhu G, Jiang M, Yu C, Wu F. An optical study of the combustion and flame development of ammonia-diesel dual-fuel engine based on flame chemiluminescence. Fuel. 2023 Oct 1;349:128507.
  • Huang Y, Yan Y, Lu G, Reed A. On-line flicker measurement of gaseous flames by image processing and spectral analysis. Measurement Science and Technology. 1999 Aug 1;10(8):726.
  • Huang HW. Digital camera based measurement of flame properties (Doctoral dissertation, University of Manchester).
  • Ghosh S, Mondal S, Mondal T, Mukhopadhyay A, Sen S. Dynamic characterization of candle flame. International Journal of Spray and Combustion Dynamics. 2010 Sep;2(3):267-84.
  • Thiruchengode M. Sensing and dynamics of lean blowout in a swirl dump combustor. Georgia Institute of Technology; 2006.
  • De S, Biswas A, Bhattacharya A, Mukhopadhyay A, Sen S. Use of flame color and chemiluminescence for early detection of lean blowout in gas turbine combustors at different levels of fuel–air premixing. Combustion Science and Technology. 2019 Apr 23.
  • Bedard MJ, Fuller TL, Sardeshmukh S, Anderson WE. Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor. Combustion and Flame. 2020 Mar 1;213:211-25.
  • Dieck RH, Steele WG, Osolsobe G. Test uncertainty. Asme Ptc. 2005;19.
  • Jeong YK, Jeon CH, Chang YJ. Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH4-air flames. Experimental Thermal and Fluid Science. 2006 Jul 1;30(7):663-73.
  • Haber LC. An investigation into the origin, measurement and application of chemiluminescent light emissions from premixed flames (Doctoral dissertation, Virginia Tech).
  • Bulewicz EM, Padley PJ, Smith RE. Spectroscopic studies of C2, CH and OH radicals in low pressure acetylene+ oxygen flames. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1970 Feb 3;315(1520):129-47.

[24] Guyot D, Guethe F, Schuermans B, Lacarelle A, Paschereit CO. CH*/OH* chemiluminescence response of an atmospheric premixed flame under varying operating conditions. InTurbo Expo: Power for Land, Sea, and Air 2010 Oct 10 (Vol. 43970, pp. 933-944).

[25] Kojima J, Ikeda Y, Nakajima T. Basic aspects of OH (A), CH (A), and C2 (d) chemiluminescence in the reaction zone of laminar methane–air premixed flames. Combustion and flame. 2005 Jan 1;140(1-2):34-45.

[26] Ikeda Y, Kurahashi T, Kawahara N, Tomita E. Temperature measurements of laminar propane/air premixed flame using detailed oh* spectra intensity ratio. In12th International Symposium, Applications of Laser Techniques to Fluid Mechanics 2004 Jul.

[27] Durox D, Yuan T, Villermaux E. The effect of buoyancy on flickering in diffusion flames. Combustion science and technology. 1997 Mar 1;124(1-6):277-94.

[28] Shepherd IG, Cheng RK, Day MS. The dynamics of flame flicker in conical premixed flames: an experimental and numerical study. Lawrence Berkeley National Laboratory. 2005.