ارائه الگوریتمی برای کالیبراسیون ربات موازی دلتا بر اساس محاسبه تغییرات سینماتیک مستقیم با استفاده از دید استریو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی مکانیک، دانشگاه شهید رجائی، تهران، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه شهید رجائی، تهران، ایران

3 دانشیار، دانشکده مهندسی برق و کامپیوتر، آزمایشگاه تعامل انسان و ربات، دانشگاه تهران، تهران، ایران

چکیده

از آنجایی که سینماتیک مستقیم در ربات‌های موازی پیچیدگی بیشتری دارد و اغلب به یک راه‌حل تحلیلی منجر نمی‌شود، در اکثر مطالعات، سینماتیک معکوس برای کالیبراسیون ربات موازی ترجیح داده شده است. در این مطالعه از یک روش که نیاز به حل کامل سینماتیک مستقیم ندارد، برای کالیبراسیون استفاده شده است. در روش پیشنهادی تغییرات موقعیت عملگرنهایی نسبت به تغییرات ابعادی پارامترهای سینماتیک محاسبه شده و سپس با خطی سازی روابط امکان لازم برای استفاده از الگوریتم حداقل مربعات خطی فراهم شده است. مدل ارائه شده مانند مدل مرجع صفر و روشهای مبتنی بر حاصل ضرب نمایی تنها از یک مختصات مرجع ثابت کمک می‌گیرد و برخلاف مدل دنویت-هارتنبرگ مشکل تکینگی ندارد. در شبیه سازی نشان داده شد که الگورریتم پیشنهادی با تعداد کمی از نقاط انتخابی و با سرعت بالا، در کسری از ثانیه در چند تکرار اولیه به جوابی در محدوده نانومتر می رسد. نیز با استفاده از دید ‌استریو به صورت عملی، نظری ارائه شده مورد آزمایش قرار گرفت و نشان داد که الگوریتم پیشنهادی می‌تواند به دقت ابزار اندازه‌گیری مشابه نتایج شبیه‌سازی برسد.

کلیدواژه‌ها

موضوعات


  • Hsu T. W., Everett L. J., Identification of the kinematic parameters of a robot manipulator for positional accuracy improvement. Proceedings of the Computation in Engineering Conference, pp. 263–267, 1985.
  • Mooring B. W., Roth Z. S., Driels M. R., Fundamentals of Manipulator Calibration., John Wiley & Sons, New York, U.S., 1991.
  • Kong L., Chen G., Wang H., Huang G., Zhang D. Kinematic calibration of a 3-PRRU parallel manipulator based on the complete, minimal and continuous error model. Robotics and Computer-Integrated Manufacturing, 1;71:102158, 2021.
  • Schröer K., Albright S. L., Grethlein M., Complete, minimal and model-continuous kinematic models for robot calibration. Robotics and Computer-Integrated Manufacturing. 13 (1) (1997) 73–85, 1997.
  • Lin C., Kinematic Calibration for Closed Loop Robots.d. thesis, Texas A-M University, 1989.
  • Vischer P., Improving the Accuracy of Parallel Robots.d. thesis, Swiss Federal Institute of Technology in Zurich, 1996.
  • Denavit J. and Hartenberg R. S., A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied  Mechanics, 215-221,1955.
  • Khaleghian A., Dadashzadeh B., Kinematic Calibration and Positioning Error Compensation for the Puma Robot Model. Modares Mechanical Engineering, Proceedings of the Advanced Machining and Machine Tools Conference, Vol. 15, No. 13, pp. 506-510, 2015.
  • Mooring B. W. The effect of joint axis misalignment on robot positioning accuracy. Proceedings of the 1983 ASME Computers in Engineering Conf., pp 151- 155, August 1983.
  • Paul R. P., Robot Manipulators: Mathematics, Programming, and Control. The MIT Press, MA, 1981.
  • Payannet D., Aldon M. J., and Liegeois A., Identification and compensation of mechanical errors for industrial robots. Proceedings of the 15th International Symposium on Industrial Robots, pp. 857 — 864, Tokyo, 1985.
  • Zhuang H., Roth Z. S., Hamano F., A complete and parametrically continuous kinematic model for robot manipulators. IEEE Transaction, Robot, Automation. 8 (4) (1992) 451–463, 1992.
  • Zhuang H., Roth Z. S., Camera-Aided Robot Calibration. CRC Press, 1996.
  • Balanji H. M., Turgut A. E., Tunc LT., A novel vision-based calibration framework for industrial robotic manipulators. Robotics and Computer-Integrated Manufacturing,
  • Kong L., Chen G., Zhang Z., Xie A., Wang H., Zhang D., Complete, minimal and continuous kinematic error models of perfect multi-DOF joints for parallel manipulators. in 44th Mechanisms and Robotics Conference (MR), American Society of Mechanical Engineers,
  • Hayati S. A. and Mirmirani M., A software for robot geometry parameter estimation, SME Paper No. MS84-1052, presented at Robots West Conference. Anaheim, CA, November, 1984.
  • Stone H. W., Kinematic Modeling, Identification, and Control of Robot Manipulators. Kluwer, Boston, 1987.
  • Stone H. W. and Sanderson A. C., A prototype arm signature identification system. In Proceedings of 1987 IEEE International Conference on Robotics and Automation, pp. 175 — 182, April 1987.
  • Park F. C., Okamura K., Kinematic calibration and the product of exponentials formula. Advances in Robot Kinematics and Computational Geometry, Springer, pp. 119–128, 1994.
  • Brockett R., Robotic manipulators and the product of exponential formulas. in Mathematical Theory of Networks and Systems, pp. 120–129, Springer Berlin Heidelberg, A. Fuhrmann (Ed.), 1984.
  • Mooring B. W. and Tang G. R., An improved method for identifying the kinematic parameters in a six axis robot. In Proceedings of the 1984 ASME Computers in Engineering Conference, pp.79—84, August 1984.
  • Merlet J. P., Parallel robots. 128, Springer Science & Business Media, 2006.
  • Abtahi M., Pendar H., Alasty A., Vossoughi G., Experimental kinematic calibration of parallel manipulators using a relative position error measurement system. Robotics and Computer-Integrated Manufacturing,799–804, 2010.
  • Chen G., Kong L., Li Q., Wang H., A simple two-step geometric approach for the kinematic calibration of the 3-PRS parallel manipulator. Robotica 37 (5) 837–850, 2019.
  • Li F., Zeng Q., Ehmann K.F., Cao J., Li T., A calibration method for over- constrained spatial translational parallel manipulators. Robotics and Computer-Integrated Manufacturing, 57, 241–254, 2019.
  • Tanaka W., Arai T., Inoue K., Mae Y., Koseki Y., Calibration method with simplified measurement for parallel mechanism. Nippon Kikai Gakkai Ronbunshu C Hen (Transactions of 17(1):206-13, 2005.
  • Russo M., Dong X., A calibration procedure for reconfigurable Gough-Stewart manipulators. Mechanism and Machine Theory, 152, p.103920,
  • Bai S., Teo M. Y., Kinematic calibration and pose measurement of a medical parallel manipulator by optical position sensors. Journal of Robotic Systems, 201–209, 2003.
  • Liu H., Huang T., Chetwynd D. G., A general approach for geometric error modeling of lower mobility parallel manipulators., Journal of Mechanisms and Robotics, 2011.
  • Daneshmand M., Tale Masouleh M., Anbarjafari Gh. R., Kinematic Sensitivity Analysis of Parallel Mechanisms by Considering the Effect of Uncertainties in Passive Joints. Modares Mechanical Engineering,
  • Clavel R., Device for the movement and positioning of an element in space., US Patent 4,976,582, 1990.
  • Zobel P .B. and Clavel R., On the static Calibration of the Delta Parallel Robot. IASTED Robotics and Manufacturing, pp. 88-91,Oxford, England, 1993.
  • Lintott A. and Dunlop G. R., Calibration of a parallel topology robot. Proceedings Robotics and Manufacturing, ISRAM 429 — 43, 1996.
  • Vischer P., Clavel R., Kinematic calibration of the parallel Delta robot. Robotica 16 (2) 207–218, 1998.
  • Kong L., Chen G., Zhang Z., Wang H., Kinematic calibration and investigation of the influence of universal joint errors on accuracy improvement for a 3-DOF parallel manipulator. Robot Computer Integrated Manufacturing, 388–397, 2018.
  • Wang J., Masory O., On the accuracy of a Stewart platform. I. The effect of manufacturing tolerances. In Proceedings IEEE International Conference on Robotics and Automation 1993 May 2 (pp. 114-120). IEEE, 1993.
  • Masory O., Wang J., Zhuang H., On the accuracy of a Stewart platform. II. Kinematic calibration and compensation. In Proceedings IEEE International Conference on Robotics and Automation 1993 May 2 (pp. 725-731). IEEE, 1993.
  • Hadfield H., Wei L., Lasenby J., The forward and inverse kinematics of a delta robot. In 37th Computer Graphics International Conference, CGI 2020, Geneva, Switzerland, October 20–23, 2020,
  • Watson G. S., Linear least squares regression. The Annals of Mathematical Statistics,1:1679-99, 1967.
  • Dastjerdi A. H., Sheikhi M. M., Tale Masouleh M., A complete analytical solution for the dimensional synthesis of 3-DOF delta parallel robot for a prescribed workspace. Mechanism and Machine Theory.1;153:103991, 2020.
  • Chalangari Juybari H., Tale Masouleh M., Dadash Zadeh B., Modeling and Experimental Evaluation of Stiffness of a Linear Decoupled 3 Degree of Freedom Parallel Robot. Modares Mechanical Engineering.10;19(6):1385-96, 2019.
  • Korayem M. H., Irani M., Charesaz A., Korayem A. H., Hashemi A., Trajectory planning of mobile manipulators using dynamic programming approach. 2013 Jul ;31(4):643-56, 2013.
  • Wang J., Gong Z., Yu S., Tao B., A Pose Estimation and Optimization Method for Mobile Manipulator’s End-effectors Based on Stereo Vision and ICoP Algorithm. In 27th Inter. Conf. on Mechatronics and Machine Vision in Practice (M2VIP) 2021 Nov 26 (pp. 744-749). IEEE, 2021.
  • Luo Z., Zhang K., Wang Z., Zheng J., Chen Y., 3D pose estimation of large and complicated workpieces based on binocular stereo vision. Applied Optics. 2017 Aug 20;56(24):6822-36, 2017.
  • Zhang X., Song Y., Yang Y., Pan H., Stereo vision based autonomous robot calibration. Robotics and Autonomous Systems. 2017 Jul 1;93:43-51, 2017.
  • Dastjerdi A. H., Optimizing Tracking Algorithm For Contact Probe of CMM by Non Contact Probe based On Image Processing. PhD Thesis, Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, 2010.