[1] Nobuyuki k., Tomita E., and Sakata Y., Auto-ignited kernels during knocking combustion in a spark-ignition engine. Proceedings of the Combustion Institute, Vol. 31, No. 2, pp. 2999–3006, Jan. 2007, doi: 10.1016/j.proci.2006.07.210.
[2] Fauzan M.F., Chuah L. S. , Lee C. , Hameed A., Lee J., and Shankar M., A Review of Hydrogen as a Fuel in Internal Combustion Engines. Journal of Mechanical Engineering Research and Developments, Vol. 42, No. 3, pp. 35–46, Apr. 2019, doi: 10.26480/jmerd.03.2019.35.46.
[3] Mattingly JD, Elements of gas turbine propulsion. 1996.
[4] Roskam J., Airplane Design Part IV: Layout Design of Landing Gear and Systems. 1989.
[5] Astley R. J., Numerical methods for noise propagation in moving flows, with application to turbofan engines. Acoust Sci Technol, Vol. 30, No. 4, pp. 227–239, 2009, doi: 10.1250/ast.30.227.
[6] Royalty C., Schuster B., Noise from a Turbofan Engine Without a Fan from the Engine Validation of Noise and Emission Reduction Technology (EVNERT) Program. in 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), May 2008. doi: 10.2514/6.2008-2810.
[7] Aydin H., Turan O., Karakoc T. H., and Midilli A., Exergetic Sustainability Indicators as a Tool in Commercial Aircraft: A Case Study for a Turbofan Engine. Int J Green Energy, Vol. 12, No. 1, pp. 28–40, Jan. 2015, doi: 10.1080/15435075.2014.889004.
[8] Turan O., An exergy way to quantify sustainability metrics for a high bypass turbofan engine. Energy, Vol. 86, pp. 722–736, Jun. 2015, doi: 10.1016/j.energy.2015.04.026.
[9] Turan O., Aydin H., Exergy-based Sustainability Analysis of a Low-bypass Turbofan Engine: A Case Study for JT8D. Energy Procedia, Vol. 95, pp. 499–506, Sep. 2016, doi: 10.1016/j.egypro.2016.09.075.
[10] Hassan H. Z. , Evaluation of the local exergy destruction in the intake and fan of a turbofan engine. Energy, Vol. 63, pp. 245–251, Dec. 2013, doi: 10.1016/j.energy.2013.10.062.
[11] Şöhret Y., Ekici S., Altuntaş Ö., Hepbasli A., and Karakoç T. H., Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review. Progress in Aerospace Sciences, Vol. 83, pp. 57–69, May 2016, doi: 10.1016/j.paerosci.2016.03.001.
[12] Sogut M. Z., Yalcin E., and Karakoc T. H., Assessment of degradation effects for an aircraft engine considering exergy analysis. Energy, Vol. 140, pp. 1417–1426, Dec. 2017, doi: 10.1016/j.energy.2017.03.093.
[13] Mattingly J.D., Heiser W.H., Pratt D.T., Aircraft Engine Design. AIAA Education Series,American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, ISBN 1-56347-538-3, pp.210-218, 2002.
[14] Mattingly, J. D. ‘Elements of Propulsion: Gas Turbines and Rockets. AIAA Press., Virginia, United States, 2006.
[15] The GE90 – An Introduction[R]. Stanford University AA283 Course Material.
[16] Mohsin E.M., Abdulateef O. F., Al-Ashaab A.. Applying Trade-off Curve to Support Set-Based Design application at an Aerospace Company. Al-Khwarizmi Engineering Journal, 16(4), 1-10., 2020.
[17] Cumpsty N. A. Compressor aerodynamics, Longman Scientific & Technical, England, 1989.