طراحی کنترل‌کننده مبتنی بر مد لغزشی ترمینال با تابع عملکرد از پیش تعیین شده برای سیستم‌های تثبیت موقعیت پویای کشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدرس، دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر، ایران

2 دانشجو، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

در این پژوهش یک کنترل‌کننده برای کنترل و حفظ موقعیت کشتی طراحی می‌شود به‌طوری‌که هم قابلیت نگهداری کشتی در یک نقطه، انتقال خودکار کشتی از یک نقطه به نقطه دیگر و هم قابلیت ردیابی یک هدف را دارا می‌باشد. برای بالابردن دقت و سرعت عملکرد از یک کنترل‌کننده پسگام مبتنی بر روش مد لغزشی ترمینال استفاده می‌گردد که همگرایی زمان-محدود خطای ردیابی را بدون وابستگی به شرایط اولیه سیستم تضمین می‌کند. همچنین جهت تضمین عملکرد حالت‌گذرا، از یک تابع عملکرد از پیش تعیین شده در طراحی استفاده می‌شود. کنترل‌کننده طراحی شده ضمن تضمین عملکرد خطای ردیابی در یک محدوده از پیش تعیین شده، سیستم کشتی را در زمان ثابت بدون وابستگی به شرایط اولیه به‌صورت کراندار نهایتاً یکنواخت پایدار می‌سازد به‌طوری‌که خطای ردیابی به یک همسایگی نزدیک مبدا همگرا می‌شود. جهت صحت سنجی، کنترل‌کننده موردنظر در محیط متلب بر روی مدل کشتی آزمایش می‌شود و نتایج نشان می‌دهد که کنترل‌کننده طراحی شده موقعیت کشتی را به خوبی کنترل می‌کند و تمامی یافته‌های تئوری نیز تایید می‌شود. 

کلیدواژه‌ها

موضوعات


[1] Balchen J. G., Jenssen N. A., Mathisen E., Sælid S., A dynamic positioning system based on Kalman filtering and optimal control. Modeling, Identification and Control, Vol. 1, No.3, pp. 135-163, 1980.
[2] Fung P., Grimble M., Dynamic Ship Positioning Using Self-Tuning Kalman Filter. IEEE Transactions on Automatic Control, Vol. 28, No.3, pp. 339-349, 1983.
[3] Saelid S., Jenssen,N., Balchen J., Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control. IEEE Transactions on Automatic Control, Vol. 28, No.3, pp 331-339, 1983.
[4] Fossen T. I., A survey on nonlinear ship control: From theory to practice. IFAC Proc, Vol. 33, No.21, pp. 1–16, 2000.
[5] Fossen T. I., Grovlen A., Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans. Control Syst. Technol, No.6, pp. 121–128, 1998.
[6] Loria A., Fossen T. I., Panteley E., A separation principle for dynamic positioning of ships: Theoretical and experimental results. IEEE Trans. Control Syst. Technol, No.8, pp. 332–343, 2000.
[7] Hu X., Du J., Li J., Sun Y., Asymptotic regulation of dynamically positioned vessels with unknown dynamics and external disturbances. J. Navig, No.73, 253–266, 2020.
[8] Fossen T. I., Paulsen M. J. ,Adaptive feedback linearization applied to steering of ships. In Proceedings of the IEEE Conference on Control Applications. Dayton, OH, USA, pp. 1088–1093, 1993.
[9] Candeloro M., Sørensen A. J., Longhi S., Dukan F., Observers for dynamic positioning of ROVs with experimental results. IFAC, No.45, pp. 85–90, 2012.
[10] Yamamoto M., Morooka, C.K. Dynamic positioning system of the semi-submersible platform using fuzzy control. J. Braz. Soc. Mech. Sci. Eng. 2005, 27, 449–455.
[11] Hu X., Du J., Shi J., Adaptive fuzzy controller design for dynamic positioning system of vessels. Appl. Ocean Res, No.53, pp. 46–53, 2015.
[12] Tao W., Shaocheng T., Adaptive fuzzy robust control for nonlinear system with dynamic uncertainties based on backstepping. In Proceedings of the International Conference on Innovative Computing Information and Control, Dalian, Liaoning, China, pp. 18–20, 2008.
[13] Stephens R. I., Burnham K. J., Reeve P. J., A practical approach to the design of fuzzy controllers with application to dynamic ship positioning. IFAC Proc, Vol. No 28, pp. 370–377, 1995.
[14] He H., Xu S., Wang L., Li B., Mitigating surge–pitch coupled motion by a novel adaptive fuzzy damping controller for a semisubmersible platform. J. Mar. Sci. Technol, No.25, pp. 234–248, 2020.
[15] Wang Y., Zhang X., Fu Y., Ding F., Fu M., Wang C., Adaptive Fuzzy Sliding Mode Controller for Dynamic Positioning of FPSO Vessels. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, pp. 1–7, 2019.
[16] Fang M. C., Lee Z. Y., Application of neuro-fuzzy algorithm to a portable dynamic positioning control system for ships. Int. J. Nav. Archit. Ocean Eng, No.8, pp. 38–52, 2016.
[17] Jang J. S., Sun C. T., Neuro-fuzzy modeling and control. Proc. IEEE, No.83, pp. 378–406, 1995.
[18] Zhang D., Ashraf M. A., Liu Z., Peng W. X., Golkar M. J., Mosavi A., Dynamic modeling and adaptive controlling in GPS-intelligent buoy (GIB) systems based on neural-fuzzy networks. Ad Hoc Netw, No.103, p. 102149, 2020.
[19] Du J., Yang Y., Wang D., Guo C., A robust adaptive neural networks controller for maritime dynamic positioning system. Neurocomputing, No.110, pp. 128–136, 2013.
[20] Sørensen A. J., A survey of dynamic positioning control systems. Annu. Rev. Control , No.35, pp. 123–136, 2011.
[21] Nguyen T. D., Sørensen A. J., Quek S. T., Design of hybrid controller for dynamic positioning from calm to extreme sea conditions. Automatica, No.43, pp. 768–785, 2007.
[22] Fossen T. I., Handbook of Marine Craft Hydrodynamics and Motion Control. IEEE Control Syst, No.36, pp. 78–79, 2016.
[23] Ambrosovskaya M. E., Design and control session approach for advanced testing of DP control system. In Proceedings of the MTS DP Conference, Houston, TX, USA, 2014.
[24] Donnarumma S., Figari M., Martelli M., Vignolo S., Viviani M., Design and validation of dynamic positioning for marine systems: A case study. IEEE J. Ocean. Eng, No.43, pp. 677–688, 2018.
[25] Maritime K., Benelux B. V., Dynamic Positioning System, Dual Redundant-K-Pos DP-21/22-Kongsberg Maritime. Available online,2018.
[26] Sotnikova M.V., Veremey E. I., Dynamic positioning based on nonlinear MPC. IFAC Proc. Vol. 46, No.33, pp. 37–42, 2013.
[27] Veksler A., Johansen T. A., Borrelli F., Realfsen B., Dynamic positioning with model predictive control. IEEE Trans. Control Syst. Technol, No.4, pp. 1340–1353, 2016.
[28] Zheng H., Negenborn R. R., Lodewijks G., Trajectory tracking of autonomous vessels using model predictive control. IFAC Proc, Vol. 47, pp. 8812–8818, 2014.
[29] Yan Z., Wang J., Model predictive control for tracking of under actuated vessels based on recurrent neural networks. IEEE J. Ocean. Eng, Vol. 37, pp. 717–726, 2012.
[30] Chen H., Wan L., Wang F., Zhang G., Model predictive controller design for the dynamic positioning system of a semi-submersible platform. J. Mar. Sci. Appl, Vol. 11, pp. 361–367, 2012.
[31] Zheng H., Wu J., Wu W., Zhang Y., Robust dynamic positioning of autonomous surface vessels with tube-based model predictive control. Ocean Eng, 199, p. 106820, 2020.
[32] Yan Z., Wang J., Model predictive control for tracking of under actuated vessels based on recurrent neural networks. IEEE J. Ocean. Eng, 37, pp. 717–726, 2012.
[33] Chen H., Wan L., Wang F., Zhang G., Model predictive controller design for the dynamic positioning system of a semi-submersible platform. J. Mar. Sci. Appl. 11, pp. 361–367, 2012.
[34] Stephens R. I., Burnham K. J., Reeve P. J., A practical approach to the design of fuzzy controllers with application to dynamic ship positioning. IFAC Proc. Vol. 28, pp. 370–377, 1995.
[35] Amjad M., Ishaque K., Abdullah S. S., Salam Z., An alternative approach to design a Fuzzy Logic Controller for an autonomous underwater vehicle. In Proceedings of the 2010 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, pp. 195–200, 2010.
[36] Liang K., Lin X., Chen Y., Li J., Ding F., Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation. Ocean Eng, 206, p. 107245, 2020.
[37] Tannuri E. A., Agostinho A. C., Morishita, H.M., Moratelli L., Jr. Dynamic positioning systems: An experimental analysis of sliding mode control. Control Eng. Pract, 18, pp. 1121–1132, 2010.
[38] Wang R., Chen Z., Zhang W., Zhu Q., Sliding-Mode Control of STENA DRILLMAX Drillship with Environmental Disturbances for Dynamic Positioning. In Proceedings of the 11th International Conference on Modelling, Identification, and Control (ICMIC2019), Tianjin, China, 2019.
[39] Zhang G., Zhang H., Huang X., Wang J., Yu H., Graaf R, Active fault-tolerant control for electric vehicles with independently driven rear inwheel motors against certain actuator faults, IEEE Transactions on Control Systems Technology, Vol. 24, No.5, pp. 1557–1572, 2016.
[40] Shen Z.; Bi Y., Wang Y., Guo C., MLP neural network-based recursive sliding mode dynamic surface control for trajectory tracking of fully actuated surface vessel subject to unknown dynamics and input saturation. Neurocomputing, 377, pp. 103–112, 2020.
[41] Rodriguez J., Castañeda H., Gonzalez-Garcia A., Gordillo J. L. Finite-time control for an Unmanned Surface Vehicle based on adaptive sliding mode strategy. Ocean Engineering 254, p. 111255, 2022.
[42] Wang Y., Hao L. Y., Li T., Chen C. P. Integral Sliding Mode-Based Fault-Tolerant Control for Dynamic Positioning of Unmanned Marine Vehicles Based on a TS Fuzzy Model." Journal of Marine Science and Engineering, No.2 ,p. 370, 2023.
[43] Li J., Xiang X., Yang S. ,Robust adaptive neural network control for dynamic positioning of marine vessels with prescribed performance under model uncertainties and input saturation, Neurocomputing 484, pp. 1-12, 2022.
[44] Fu M., Zhang G., Xu Y., Non-switching reference trajectory based discrete-time sliding mode path following control for dynamic positioning ship with time-varying disturbances. Ocean Engineering 264, p. 112385, 2022.
[45] Witkowska A., Śmierzchalski R., Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming. Ocean Eng. 163, pp. 570–582, 2018.
[46] Yu W., Xu H., Han X., Chen Y., Zhu M., Fault-tolerant control for dynamic positioning vessel with thruster faults based on the neural modified extended state observer. IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 5905-17, 2019.
[47] Gao M., Ding L., Jin X., ELM-Based Adaptive Faster Fixed-Time Control of Robotic Manipulator Systems. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[48] Cao X., Shi P., Li Z., Liu M., Neural-network-based adaptive backstepping control with application to spacecraft attitude regulation. IEEE transactions on neural networks and learning systems, Vol. 29, No.9, pp. 4303-13, 2017.
[49] Shi W., Luo R., Li B., Adaptive fuzzy prescribed performance control for MIMO nonlinear systems with unknown control direction and unknown dead-zone inputs. ISA transactions, Vol.66, pp. 86-95, 2017.