بررسی اثرات شکل دیواره بر روی پدیده جذب در فیلم مایع گرانشی با سطح آزاد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

2 دانشیار، گروه مهندسی هوافضا، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

چکیده

پدیده جذب گاز به داخل فاز مایع در یک فیلم مایع گرانشی در پدیده‌های گوناگون طبیعی رخ داده و استفاده از آن در صنایع مختلف به ‌ویژه صنعت رطوبت‌زدایی و آب‌شیرین‌کن گسترش یافته است. پیچیدگی فیزیک جریان، انتقال جرم، گرما و ابعاد کوچک یک فیلم مایع باعث شده تا مدل‌سازی و شبیه‌سازی عددی آن نقش کلیدی در بررسی و مطالعه اثربخشی و بهبود فرآیند جذب در یک جاذب مایع شود. در کار حاضر، اثرات عدد رینولدز، دمای دیواره و شکل دیواره بر روی انتقال جرم و گرما عبوری از سطح تماس از فاز گاز داخل به یک جریان لایه‌ای فیلم مایع مورد بررسی قرار گرفته است. مدل‌سازی عددی با استفاده از یک الگوریتم ناپایای تعقیب سطح تماس کاملا همگیر و رهیافت روش لاگرانژی-اویلری اختیاری با زبان برنامه‌نویسی فرترن صورت پذیرفته است. نتایج شبیه‌سازی‌ها نشان می‌دهد که تغییر شکل سطح دیواره‌ که فیلم مایع بر روی آن جاری است و سرد کردن دیواره اثر چشمگیری بر روی نرخ جذب بخار گاز به داخل فیلم مایع نسبت به دیواره تخت دارد.

کلیدواژه‌ها

موضوعات


  • Craster R. V. and Matar O. K., Dynamics and stability of thin liquid films. Reviews of modern physics, Vol. 81, No.3, pp. 1131, 2009.
  • Alhusseini A. A., Tuzla K. and Chen J. C., Falling film evaporation of single component liquids. International journal of heat and mass transfer, Vol. 41, No.12, pp. 1623-1632, 1998.
  • Triché D., Bonnot S., Perier-Muzet M., Boudéhenn F., Demasles H. and Caney N., Experimental and numerical study of a falling film absorber in an ammonia-water absorption chiller. International journal of heat and mass transfer, Vol. 111, pp. 374-385, 2017.
  • Zhang F., Guo L., Ding Y., Zhu, X. and Liao Q., Flow pattern and CO2 absorption in a falling film reactor with mixed aqueous solution of ionic liquid and MEA. Applied Thermal Engineering, Vol. 138, pp. 583-590, 2017.
  • Li T., Yin Y., Liang Z. and Zhang X., Experimental study on heat and mass transfer performance of falling film absorption over a vertical tube using LiCl solution. international journal of refrigeration, Vol. 85, pp. 109-119, 2018.
  • Hofmann E. and Kuhlmann H. C., On the optimum mass transfer of flat absorbing falling films. International journal of heat and mass transfer, Vol. 55, No.25-26, pp. 7686-7697, 2012.
  • Giannetti N., Rocchetti A., Yamaguchi S. and Saito K., Heat and mass transfer coefficients of falling-film absorption on a partially wetted horizontal tube. International Journal of Thermal Sciences, Vol. 126, pp. 56-66,2018.
  • Giannetti N., Yamaguchi S. and Saito K., Simplified expressions of the transfer coefficients on a partially wet absorber tube. International Journal of Refrigeration, Vol. 105, pp. 135-147, 2019.
  • Li M. and Lu Y., Numerical and experimental study of local heat mass transfer characteristics of horizontal falling films of CaCl2 solution absorbing vapor from humid air. International Journal of Heat and Mass Transfer, Vol. 153, pp. 119574, 2020.
  • Mittermaier M. and Ziegler F., Impact of a developing velocity profile on heat and mass transfer in absorbing laminar falling films. Chemie Ingenieur Technik, Vol. 88, No.1‐2, pp. 139-146, 2016.
  • Papaefthimiou V. D., Koronaki I. P., Karampinos D. C. and Rogdakis E. D., A novel approach for modelling LiBr–H2O falling film absorption on cooled horizontal bundle of tubes. international journal of refrigeration, Vol. 35, No.4, pp. 1115-1122, 2012.
  • Havestini R. A. and Ormiston S. J., An elliptic numerical analysis of water vapour absorption into a falling film in vertical parallel plate channels. International Journal of Heat and Mass Transfer, Vol. 150, pp. 119266, 2020.
  • Chen S., Zhang T., Lv L., Chen Y. and Tang S., Simulation of the hydrodynamics and mass transfer in a falling film wavy microchannel. Chinese Journal of Chemical Engineering, Vol. 34, pp. 97-105, 2021.
  • Das A., Das R. S. and Das K., Performance analysis of aqueous LiCl and CaCl2 based falling film dehumidifier with surface modification. Applied Thermal Engineering, Vol. 200, pp. 117704, 2022.
  • Lu H., Lu L. and Gao X., Mass transfer enhancement of falling film liquid desiccant dehumidification by micro-baffle plates. International Journal of Heat and Mass Transfer, Vol. 169, pp. 120945, 2021.
  • Das A., Das R. S. and Das K., Performance enhancement of a liquid desiccant absorber with triangular corrugated structured packing. Journal of Building Engineering, Vol. 45, pp. 103677, 2022.
  • Dietze G. F., Effect of wall corrugations on scalar transfer to a wavy falling liquid film. Journal of Fluid Mechanics, Vol. 859, pp. 1098-1128, 2019.
  • Sarafraz M. M., Hormozi F. and Peyghambarzadeh S. M., Pool boiling heat transfer to aqueous alumina nano-fluids on the plain and concentric circular micro-structured (CCM) surfaces. Experimental Thermal and Fluid Science, Vol. 72, pp. 125-139, 2016.
  • Salimpour M. R., Abdollahi A. and Afrand, M., An experimental study on deposited surfaces due to nanofluid pool boiling: Comparison between rough and smooth surfaces. Experimental Thermal and Fluid Science, Vol. 88, pp. 288-300, 2017.
  • Mehralizadeh A., Shabanian S. R. and Bakeri G., Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: A review. Thermal Science and Engineering Progress, Vol. 15, pp. 100451, 2020.
  • Walunj A. and Sathyabhama A., Comparative study of pool boiling heat transfer from various microchannel geometries. Applied Thermal Engineering, Vol. 128, pp. 672-683, 2018.
  • Halon T., Zajaczkowski B., Michaie S., Rulliere R. and Bonjour J., Experimental study of low pressure pool boiling of water from narrow tunnel surfaces. International Journal of Thermal Sciences, Vol. 121, pp. 348-357, 2017.
  • Ghadikolaei S. S., Yassari M., Sadeghi H., Hosseinzadeh K, and Ganji D. D., Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder technology, Vol. 322, pp. 428-438, 2017.
  • Gheitaghy A. M., Samimi A. and Saffari H., Surface structuring with inclined minichannels for pool boiling improvement. Applied Thermal Engineering, Vol. 126, pp. 892-902, 2017.
  • Huminic G. and Huminic A., Hybrid nanofluids for heat transfer applications–a state-of-the-art review. International Journal of Heat and Mass Transfer, Vol. 125, pp. 82-103, 2018.
  • Pastuszko R., Pool boiling heat transfer on micro-fins with wire mesh–Experiments and heat flux prediction. International Journal of Thermal Sciences, Vol. 125, pp. 197-209, 2018.
  • Abdollahi A., Salimpour M. R. and Etesami N., Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Applied Thermal Engineering, Vol. 111, pp. 1101-1110, 2017.
  • Sajid M. U. and Ali H. M., Thermal conductivity of hybrid nanofluids: a critical review. International Journal of Heat and Mass Transfer, Vol. 126, pp. 211-234, 2018.
  • Mori S., Maruoka N. and Okuyama K., Critical heat flux enhancement by a two-layer structured honeycomb porous plate in a saturated pool boiling of water. International Journal of Heat and Mass Transfer, Vol. 118, pp. 429-438, 2018.
  • Mehralizadeh A., Shabanian S. R. and Bakeri G., Experimental and modeling study of heat transfer enhancement of TiO2/SiO2 hybrid nanofluids on modified surfaces in pool boiling process. The European Physical Journal Plus, Vol. 135, No.10, pp. 796, 2020.
  • Vakilipour S. and Hekmatkhah R., Investigation of water vapour absorption into wavy falling films by developing a fully coupled interface tracking finite volume method. International Journal of Heat and Mass Transfer, Vol. 185, pp. 122397, 2022.
  • Vakilipour S., Mohammadi M. and Ormiston S., A fully coupled ALE interface tracking method for a pressure-based finite volume solver. Journal of Computational Physics, Vol. 427, pp. 110054, 2021.
  • Vakilipour S., Mohammadi M., Badrkhani V. and Ormiston S., Developing a physical influence upwind scheme for pressure‐based cell‐centered finite volume methods. International Journal for Numerical Methods in Fluids, Vol. 89, No.1-2, pp. 43-70, 2019.
  • Vakilipour S. and Ormiston S. J., A coupled pressure-based co-located finite-volume solution method for natural-convection flows. Numerical Heat Transfer, Part B: Fundamentals, Vol. 61, No.2, pp. 91-115, 2012.
  • Malamataris N. A. and Balakotaiah V., Flow structure underneath the large amplitude waves of a vertically falling film. AIChE journal, Vol. 54, No.7, pp. 1725-1740, 2008.
  • Ferziger J. H., Perić M. and Street R. L., Computational methods for fluid dynamics. 3, pp. 196-200. Springer, Berlin,2002.