ارزیابی چرخه‌حیات سیستم حصر مستقیم کربن‌دی‌اکسید با فرآیند فیشر-تروپش برای تولید سوخت حمل و نقل تحت سه سناریو تولید برق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

3 کارشناسی، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

انتشار گازهای گلخانه ای به ویژه کربن دی اکسید باعث گرمایش جهانی و تغییر اقلیم شده است. روش های مختلفی برای کاهش کربن دی اکسید اتمسفر پیشنهاد می شوند. یکی از این روش ها جذب مستقیم کربن دی کسید از هوا و تولید سوخت است. از آنجا که خود این سیستم ها انتشار کربن دی اکسید دارند، لازم است ارزیابی چرخه حیات برای این سیستم ها انجام شود. در این مقاله ارزیابی چرخه حیات برای تولید سوخت حمل و نقل با استفاده از جذب مستقیم کربن دی اکسید انجام شده است. این سیستم ابتدا کربن­دی­اکسید اتمسفر را جذب می­کند و  با استفاده از الکترولیز آب و واکنش جابجایی آب-گاز معکوس آن را به گاز سنتز تبدیل می­کند. در ادامه، با واکنش فیشر-تروپش گاز سنتز به سوخت تبدیل می­شود.در این مقاله چرخه­ی سه سناریو برای تولید برق مورد نیاز سیستم در نظر گرفته شده اند که عبارتند از برق شبکه ایران، برق شبکه آینده و برق پاک (تولید شده از 100 درصد انرژی تجدیدپذیر). در سناریو برق شبکه ایران، سیستم حدود  gCO2eq./gCO2 captured6/4 آلایندگی دارد؛ آلاینده­ترین واحد­ها در این سناریو، تولید برق با هدف تولید هیدروژن برای واکنش فیشر-تروپش و برای واکنش جابجایی آب-گاز معکوس است. بنابراین، ضریب انتشار برق مهمترین عامل در تعیین سیستم با اثرات زیست محیطی کم شناسایی می­شود. آلایندگی سیستم در شرایط برق شبکه­های آینده  gCO2eq./gCO2 captured8/0 برآورد می­شود. با استفاده از برق پاک نیز، آلایندگی سیستم به gCO2eq./gCO2 captured 72/0 کاهش می­یابد. در نهایت، نتایج نشان می­دهد که در گام اول، برق باید تحت فرآیندهایی با انتشار آلاینده­ کمتر تولید شود.

کلیدواژه‌ها

موضوعات


  • M. Gutiérrez, Jones R.G., Narisma G.T., Alves L.M., Amjad M., Gorodetskaya I.V., Grose M., Klutse N.A.B., Krakovska S., Li J., Martínez-Castro D., Mearns L.O., Mernild S.H., Ngo-Duc T., van den Hurk B., Yoon J.-H. Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. Masson-Delmotte, Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., and Zhou B. (eds.)]. Available at: http://interactiveatlas.ipcc.ch
  • چمنی ف. و بیکی ح.، شبیه سازی و بهینه سازی فرآیند ریفرمینگ گازطبیعی با بخار آب و اصلاح مجدد جهت کاهش انتشار دی اکسید کربن. نشریه مهندسی مکانیک دانشگاه تبریز، د. 51، ش. 4، ص. 315-322، 1400.
  • International Energy Agency. IEA Greenhouse Gas Emissions from Energy. Available at: https://www.iea.org/data-and-statistics/data-product/CO2-emissions-from-fuel-combustion
  • Awailable at: http://www.globalcarbonatlas.org/en/CO2-emissions.
  • امینی ف.، صابرفتاحی ل.، سلیمانپور پ.، گل قهرمانی ن.، شفیع زاده م.، توانپور م.، فرمد م. ترازنامه انرژی سال 1396. 1398، صفحات 115، 117، 304.
  • Zhang Z., Borhani T.N.G., El-Naas M.H., Carbon caoture. Exergetic, energetic and environmental dimensions, pp. 997-1016, 2018.
  • قربانی ب.، پیاده روحی ف.، میانسری م.، مهرپویا م.، ساختار یکپارچه تولید همزمان دی‌اکسیدکربن مایع و آب شیرین با استفاده از گردآورهای بشقابکی خورشیدی و عملیات تبدیل LNG به گاز طبیعی. نشریه مهندسی مکانیک دانشگاه تبریز، د. 51، ش. 2، ص. 169-175، 1400.
  • Markewitz P., Kuchshinrichs W., Leitner W., Linssen J., Zapp P., Bongartz R., Schreiber A., Muller T.E., Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy and Environmental Science, Vol. 5, No. 6, pp. 7281–7305, 2012.
  • Lackner K.S., Ziock H.-J., Grimes P., Carbon Dioxide Extraction from Air: Is It An Option?. United States: No. LA-UR-99-583, 1999.
  • Keith D., Ha-Duong M., Stolaroff J., Climate strategy with CO2 capture from the air, Climatic Change, Vol. 74, No. 1–3, pp. 17–45, 2006.
  • Baciocchi, R., Storti, G., Mazzotti M., Process design and energy requirements for the capture of carbon dioxide from air, Chemical Engineering and Processing: Process Intensification., Vol. 45, No. 12, pp. 1047–1058, 2006.
  • Keith D.W., Holmes G., St. Angelo D., A Process for Capturing CO2 from the Atmosphere, Joule, Vol. 2, No. 8, pp. 1573–1594, 2018.
  • Lackner K.S., Azarabadi H., Buying down the Cost of Direct Air Capture, Industrial and Engineering Chemistry Research, Vol. 60, No. 22, pp. 8196–8208, 2021.
  • De Jonge M.M.J., Daemen J., Loriaux J.M., Steinmann Z.J.N., Huijbregts M.A.J., Life cycle carbon efficiency of Direct Air Capture systems with strong hydroxide sorbents, International Journal of Greenhouse Gas Control, Vol. 80, no. November 2018, pp. 25–31, 2019.
  • Mahdu K., Pauliuk S., Dhathri S., Creutzig F., Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nature Energy, 6(11), 1035–1044. 2021.
  • Deutz S., Bardow A., Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption, Nature Energy, Vol. 6, No. 2, pp. 203–213, 2021.
  • Zhang Q., Pastor-Perez L., Zhang X., Gu S., CO2 Conversion to Value‐Added Gas‐Phase Products: Technology Overview and Catalysts Selection, Engineering Solutions for CO2 Conversion, pp. 175–203, 2021.
  • Konarova M., Aslam W., Perking G. Fischer-Tropsch synthesis to hydrocarbon biofuels: Present status and challenges involved. In Book: Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels; chapter 3: pp. 77–96, 2022.
  • Bianchi S., Process modelling of a Direct Air Capture (DAC) system based on the Kraft process. MSc. Thesis, Politecnico di Torino, 2018.
  • Redlich O., Kwong J.N.S. On the Thermodynamics of Solutions. V., On the thermodynamics of solutions. V. An equation of state. Chemical reviews, pp. 233–244, 1949.
  • Liu C.M., Sandhu N.K., McCoy S.T., Bergerson J.A., A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer-Tropsch fuel production, Sustainable Energy and Fuels, Vol. 4, No. 6, pp. 3129–3142, 2020.
  • Zhang Y., Chen H., Chen C.C., Plaza J.M., Dugas R., Rochelle G.T., Rate-based process modeling study of CO2 Capture with aqueous monoethanolamine solution, Industrial and Engineering Chemistry Research, Vol. 48, No. 20, pp. 9233–9246, 2009.
  • Lewis W.K., Whitman W.G., Principles of Gas Absorption, Industrial and Engineering Chemistry, Vol. 16, No. 12, pp. 1215–1220, 1924.
  • Qi G., Wang S., Yu H., Feron P., Chen C., [Rate-based modeling of CO2 absorption in aqueous NH3 in a packed column, Energy Procedia, Vol. 37, No. x, pp. 1968–1976, 2013.
  • Moioli S., Pellegrini L.A., Gamba S., Simulation of CO2 capture by MEA scrubbing with a rate-based model, Procedia Engineering, Vol. 42, pp. 1651–1661, 2012.
  • ISO 14040: 2006 Environmental management — Life cycle assessment — Principles and framework. International Organization for Standardization 2006; available at: https://www.iso.org/obp/ui/fr/#iso:std:iso:14040:ed-2:v1:en
  • Müller L., Langhorst T., Kätelhön A., Bachmann M., Sternberg A., Bardow A. TEA&LCA Guidelines for CO2 Utilization (Version 1.1): Part C LCA Guidelines. Technical Report 2020.
  • Marchese M., Buffo G., Santarelli M., Lanzini A., CO2 from direct air capture as carbon feedstock for Fischer-Tropsch chemicals and fuels: Energy and economic analysis, Journal of CO2 Utilization, Vol. 46, 2021.
  • Marchese M., Giglio E., Santarelli M., Lanzini A., Energy performance of Power-to-Liquid applications integrating biogas upgrading, reverse water gas shift, solid oxide electrolysis and Fischer-Tropsch technologies, Energy Conversion and Management, 6, 2020.
  • Cengel Y.A., Boles M.A. Thermodynamics An Engineering Approach. McGraw-Hill Education: 8th Edition: 938: