بررسی تجربی ساختار سطح لباس بالدار بر عملکرد آیرودینامیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

با توجه به اهمیت بالای مانور پذیری در پرواز لباس بالدار، طراحی و هندسه این نوع لباس‌ها نقش مهمی در بهبود مانورپذیری در مسیر پروازی دارد لذا کنترل جریان به صورت فعال و غیر فعال می تواند موجب بهبود عملکرد و مانورپذیری لباس بالدار گردد. یکی از راه‌های بهبود عملکرد لباس بالدار ایجاد تغییرات هندسی نظیر موجدار کردن سطح بال می باشد. در این مقاله، به صورت تجربی در مقیاس آزمایشگاهی به بررسی آثار ایجاد برآمدگی موجی شکل بر عملکرد آیرودینامیکی لباس بالدار در مقایسه با بال صاف پرداخته شده است. با انجام آزمایش در تونل باد در زوایای حمله مختلف برای مدل آزمایشگاهی لباس بالدار و اندازه گیری ضریب برآ و پسای مدل، تغییر هندسه سطح بال شاخص کارایی (L/D) را بطور متوسط در حدود 20 درصد در زوایای حمله بالای 10 درجه بهبود داده است. همچنین با نصب تافت روی سطح مدل ها نواحی واماندگی از منظر مرئی سازی نیز بررسی گردید. مشاهدات تجربی نشان می دهد که ناحیه جدایش روی سطح بال موجدار در مقایسه با بال صاف کاهش یافته است.

کلیدواژه‌ها

موضوعات


[1]     Abrams M., Birdmen, Batmen, and Skyflyers: Wingsuits and the Pioneers Who Flew in Them, Fell in Them, and Perfected Them. Crown, 2007.
[2]     Sestak T. A., The effect of surface materials and morphology on wingsuit aerodynamics, 2017.
[3]     Taleghani A. S., Shadaram A., and Mirzaei M., Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil, IEEE Transactions on Plasma Science, Vol. 40, No. 5, pp. 1434-1440, 2012.
[4]     Shams T. A., Numerical and Parametric investigation of Suction over a Cylinder for Reduction of Flow Unsteadiness and vortex, 2019.
[5]     Abdolahipour S., Mani M., and Shams Taleghani A., Pressure Improvement on a Supercritical High-Lift Wing Using Simple and Modulated Pulse Jet Vortex Generator, Flow, Turbulence and Combustion, pp. 1-36, 2022.
[6]     Rahni M. T., Taleghani A. S., Sheikholeslam M., and Ahmadi G., Computational simulation of water removal from a flat plate, using surface acoustic waves, Wave Motion, Vol. 111, pp. 10286,2022,7
[7]     Shams S., Ghanbari Motlagh A., Abdolahipour S., and Seyed Shams Taleghani S. A., Numerical Study of the Effects of Magnetohydrodynamic Field on Shock-Induced Flow Separation, Fluid Mechanics & Aerodynamics Journal, vol. 9, no. 2, pp. 17-28,  2021.
[8]     Najafi E., Taleghani A. S., and Abdolahipour S., Investigation of synthetic jet actuator position in delaying separation of a supercritical airfoil, Journal of Aeronautical Engineering, Vol. 24, No. 1, pp. 83-96, 2022,
[9]     Yadegari M. and Shams Taleghani A., Numerical Study of Shock-Boundary Layer Interaction on an Airfoil with Cavity and Porous Surface: Parametric Investigation in a Transonic Flow, Journal of Solid and Fluid Mechanics, Vol. 6, No. 2, pp. 271-284, 2016.
[10]   Gopinathan V. and Ganesh M., Passive Flow Control over NACA0012 Aerofoil using Vortex Generators, International Journal of Engineering Research & Technology, Vol. 4, No. 9, pp. 674-678, 2015.
[11]   Rostamzadeh N., Kelso R., Dally B., and Hansen K., The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics, Physics of fluids, Vol. 25, No. 11, p. 117101, 2013.
[12]   Mustak R., Uddin M. N., and Mashud M., Effect of different shaped dimples on airfoils, in Proceedings of the 3rd International Conference on Mechanical Engineering and Renewable Energy, 2015, pp. 26-29.
[13]   Özkan M., Active and Passive Flow Control Methods Over Airfoils for Improvement in Aerodynamic Performance, in New Frontiers in Sustainable Aviation, Karakoc T. H., Colpan C. O., and Dalkiran A. Eds. Cham: Springer International Publishing, 2022, pp. 19-33.
[14]   Bushnell D. M. and Moore K., Drag reduction in nature, Annual review of fluid mechanics, Vol. 23, No. 1, pp. 65-79, 1991.
[15]   Fish F. E. and Battle J. M., Hydrodynamic design of the humpback whale flipper, Journal of morphology, Vol. 225, No. 1, pp. 51-60, 1995.
[16]   Bearman P. W. and OWen J. C., Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines, Journal of Fluids and Structures, Vol. 12, No. 1, pp. 123-130, 1998.
[17]   Lam K. and Lin Y., Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers, Journal of Fluid Mechanics, Vol. 620, pp. 195-220, 2009.
[18]   Watts P. and Fish F. E., The influence of passive, leading edge tubercles on wing performance, in Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol, 200
[19]   Choi H., Kim J., Hahn S., Lee D.-k., Choi J., and Jeon W.-P., Active control of turbulent flow over a model vehicle for drag reduction, in Third Symposium on Turbulence and Shear Flow Phenomena, 2003
[20]   Miklosovic D. S., Murray M. M., and Howle L. E., Experimental evaluation of sinusoidal leading edges, Journal of aircraft, Vol. 44, No. 4, pp. 1404-1408, 2007.
[21]   Levshin A., Custodio D., Henoch C., and Johari H., Effects of leading edge protuberances on airfoil performance, in 36th AIAA Fluid Dynamics Conference and Exhibit, p. 2868, 2006.
[22]   Shan H., Jiang L., Liu C., Love M., and Maines B., Numerical study of passive and active flow separation control over a NACA0012 airfoil, Computers & fluids, Vol. 37, No. 8, pp. 975-992, 2008.
[23]   Rasal S. K. and Katwate R. R., Numerical analysis of lift & drag performance of NACA0012 wind turbine aerofoil, International Research Journal of Engineering and Technology, Vol. 4, No. 06, pp. 2892-2896, 2017.
[24]   Favier J., Pinelli A., and Piomelli U., Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers, Comptes Rendus Mecanique, Vol. 340, No. 1-2, pp. 107-114, 2012.
[25]   Skillen A., Revell A., Pinelli A., Piomelli U., and Favier J., Flow over a wing with leading-edge undulations, Aiaa Journal, Vol. 53, No. 2, pp. 464-472, 2015.
[26]   Nedić J. and Vassilicos J. C., Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications, AIAA Journal, vol. 53, no. 11, pp. 3240-3250, 2015.
[27]   Berry M., Las Fargeas J., and Blair K. B., Wind tunnel testing of a novel wingsuit design, Procedia Engineering, Vol. 2, No. 2, pp. 2735-2740, 2010.
[28]   Ansari N., Krzywinski S., and Fröhlich J., Towards a combined CAD and CFD development process of a wingsuit, Multidisciplinary Digital Publishing Institute Proceedings, Vol. 2, No. 6, p. 228, 2018.
[29]   اردکانی، م.، بررسی تجربی اثر انسداد مدل در اتاق آزمون تونل باد بر عملکرد آن، نشریه مهندسی مکانیک ایران، د 14، ش 2، ص 118-130، 1392
[30]   Ferguson M. and Agarwal R. K., Design and computational fluid dynamics analysis of an idealized modern wingsuit, in 2018 AIAA Aerospace Sciences Meeting, 2018, p. 1792.
[31]   Stockl A., Sieker J., Westman A., and Mei-Dan O., Practical and Conceptual Analysis of Wingsuit BASE Flight, Muscle Ligaments and Tendons Journal, Vol. 10, No. 02, 2020.
[32]   Ansari N., 3D Design and Simulation Methods for the Development of Wingsuits. TUDpress, 2019.