بررسی چرخه اصلاح شده رانکین آلی به منظور تولید هیدروژن و آب شیرین با استفاده از انرژی زمین گرمایی و زیست‌توده از دیدگاه انرژی، اگزرژی، اقتصادی و زیست محیطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای، گروه مهندسی مکانیک، دانشگاه یزد، یزد، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه یزد، یزد، ایران

چکیده

پژوهش حاضر به تحلیل انرژی، اگزرژی، اقتصادی و محیط زیستی  یک چرخه رانکین آلی با هدف تولید همزمان توان، هیدروژن و آب شیرین با منبع انرژی ترکیبی زمین گرمایی و زیست توده می‌پردازد. در سیستم جدید پیشنهادی از مبادله کن­های گرمایی مختلف به منظور بالا بردن راندمان اگزرژی سیستم استفاده شده است. همچنین عملکرد چرخه در دو حالت با و بدون انرژی زمین گرمایی مقایسه شده است. محاسبات نشان می‌دهد که بیشترین میزان تخریب اگزرژی برابر ۴/۱۱۹ کیلووات و مربوط به جوش­آور می‌باشد. همچنین کمترین میزان فاکتور اگزرژواکونومیک برای جوش­آور و برابر ۳۱/۱۲ درصد است. مقدار هیدروژن تولیدی و آب شیرین به ترتیب ۵۸/۱ لیتر بر ثانیه و ۱۵/۴ کیلوگرم بر ثانیه می‌باشد و با افزایش دمای منبع زمین گرمایی از ۱۲۵ تا ۱۶۰ درجه سلسیوس، مقدار هیدروژن و آب شیرین تولید شده به ترتیب به میزان ۳۰ و ۱۸ درصد افزایش پیدا می‌کند. در صورت عدم استفاده از انرژی زمین گرمایی و تأمین کل انرژی توسط زیست توده، مقدار دی اکسید کربن منتشر شده به مقدار ۶۸ درصد افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


[1] Razmi A, Soltani M, Torabi M  Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression absorption refrigeration cycle: energy and exergy analysis. Energy Convers Manag; 195:1199e211, 2019.
[2] Guoquan Qiu, Yingjuan Shao, Jinxing Li, Hao Liu , Saffa .B. Riffat ,Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications", Fuel, 96: 374–382, 2012.
]3[ عبدالعلی پور عدل م.، خلیل آریا ش. و جعفرمدار ص.، استفاده از یک چرخه ترکیبی تبخیر آنی یک و سه مرحله ای با رانکین الی برای تولید توان از چاههای زمین گرمایی سبلان، مجله مهندسی مکانیک دانشگاه تبریز، د. 50، ش. 3، 2 ص 155-164، 1399.
]4[ عالی .، پورمحمود ن. و زارع و.، تحلیل اگزرژی چرخه جدید پیشنهای برای تولید توان از چاههای زمین گرمایی سبلان، مجله مهندسی مکانیک دانشگاه تبریز، د. 48، ش. 1، ص 251-260، 1397.
]5[ عبدالعلی پورعدل م. رستمی م. خلیل آریا ش. یاری م. تحلیل انرژی و اگزرژی یک سیستم بر مبنای انرژی زمین گرمایی برای تولید همزمان توان، آب شیرین، گرمایش و هیدروژن. مجله مهندسی مکانیک دانشگاه تبریز، د. 53، ش. 3 ص 135-144، 1400.
[6] Yilmaz C, Kanoglu M, Bolatturk A, Gadalla M. Economics of hydrogen production and liquefaction by geothermal energy. International journal of hydrogen energy, Vol. 37, pp. 2058-69, 2012.
[7] Kianfard H, Khalilarya S, Jafarmadar S.Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC. Energy Conversion and Management, Vol. 177, pp. 339-49, 2018.
[8] Akrami E, Chitsaz A, Nami H, Mahmoudi S. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy. Energy, Vol. 124, pp. 625-39, 2017.
[9] Yuksel YE, Ozturk M. Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production. International Journal of Hydrogen Energy, Vol. 42, pp. 2530-46, 2017.
[10] Ghaebi H, Namin AS, Rostamzadeh H. Performance assessment and optimization of a novel multi-generation system from thermodynamic and thermoeconomic viewpoints. Energy conversion and management, Vol. 165, pp. 419-39, 2018.
[11] M. T. Balta, I. Dincer, A. Hepbasli. Exergoeconomic analysis of a hybrid copper–chlorine cycle driven by geothermal energy for hydrogen production, International Journal of Hydrogen Energy, Vol. 36, No. 17, pp. 11300- 11308, 2011.
[12] M. Mehrpooya, M. Sharifzadeh, H. Ansarinasab. Investigation of a novel integrated process configuration for natural gas liquefaction and nitrogen removal by advanced exergoeconomic analysis, Applied thermal engineering. 128, 1249–1262, 2018.
[13] Zhu, X, Zhan, X, Liang, H, Zheng, X, Qiu, Y, Lin, J, Zhao, Y. The optimal design and operation stategy of renewable energy-CCHP coupled system applied in five building objects. Renewable Energy 146, 2700-2715, 2020.
[14] H.M.D.P.HerathM.A. WijewardaneR.A.C.P.RanasingheJ.G.A S. Jayasekera. Working fluid selection of  Organic Rankine Cycles 7th International Conference on Power and Energy Systems Engineering,680-686, 2020.
 
[15] Poulomi Sannigrahi, Arthur J. Ragauskas, Gerald A. Tuskan.Poplar as a feedstock for biofuels: A review of compositional characteristics", Biofuels, Bioprod, Bioref, 209-226, 2010.
[16] Ni M, Leung MK, Leung DY. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM)electrolyzer plant. Energy conversion and management, Vol. 49, pp. 2748-56, 2018.
[17] Nafey A, Sharaf M. Combined solar organic Rankine cycle with reverse osmosis desalination process: energy, exergy, and cost evaluations. Renewable Energy, Vol. 35, No 11, pp. 2571-2580, 2020.
[18] H. Nami, A. Nemati, F.J. Fard, Conventional and advanced exergy analyses of a geothermal driven dual fluid organic Rankine cycle (ORC), Applied thermal engineering. 122, 59–70, 2017.
[19] Fahad A. Al-Sulaiman, Ibrahim Dincer, Feridun Hamdullahpur, Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle", Energy 45: 975-985, 2012.
[20] A. Nemati, H. Nami, and M. Yari, Assessment of different configurations of solar energy driven organic flash cycles (OFCs) via exergy and exergoeconomic methodologies, Renewable Energy, vol. 115, pp. 1231–1248, 2018.
[21] Hoseyn. Sayyaadi, Reza. Mehrabipour, Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger, Energy, 38; 362-375, 2012.
[22] Ahmadi, Pouria, Ibrahim Dincer, Marc A. Rosen. Exergoenvironmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Conversion and Management. 64: 447–453, 2012.
[23] Nafey A, Sharaf M. Combined solar organic Rankine cycle with reverse osmosis desalination process:energy,exergy and cost evaluations. Renewable Energy, Vol. 35, No 11, pp. 2571-2580, 2010.
[24] Ahmadi, P., I. Dincer, and M.A. Rosen, Multi-objective optimization of a novel solar-based multigeneration energy system. Solar Energy. 108: p. 576-591, 2014.
[25] Pashapur, M. Jafarmadar, S. Khalilarya, Sh. Energy,exergy and exergoeconomic analyses of a novel three-generation system to produce power, heat and distillated water. Int J. Exergy, Vol. 35, No. 4, 2021.
[26] Ahmadi, Pouria, Marc A. Rosen, Ibrahim Dincer. Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system. International Journal of Greenhouse Gas Control. 5: 1540–49, 2011.
[27] Gu¨lderO¨ L Flame temperature estimation of conventional and future jet fuels. Journal of Engineering Gas Turbine and Power. 108: 376-380, 1986.
[28] Dincer, I., M.A. Rosen. Exergy, Energy, Environment and Sustainable Development. Elsevier, 2007.
[29] Ahmadi, P., I. Dincer, and M.A. Rosen, Performance assessment and optimization of a novel integrated multigeneration system for residential buildings. Energy and Buildings. 67: p. 568-578, 2013.
[30] M. Leveni, G. Manfrida, R. Cozzolino and B. Mendecka, Energy and exergy analysis of cold and power production from the geothermal reservoir of torre alfina. Energy. P 807-818, 2019.