بررسی عددی دمش و مکش همزمان روی ایرفویل بال یک هواپیمای مانورپذیر

نوع مقاله : مقاله پژوهشی

نویسنده

مربی، گروه آیرودینامیک، دانشگاه علوم و فنون شهید ستاری، تهران، ایران

چکیده

در این مقاله، بررسی عددی اثر مکش و دمش همزمان روی ایرفویل بال یک هواپیمای مانور پذیر برای کوچک کردن حباب جدایش انجام شده است. این بررسی در عدد رینولدز106×85 و توسط نرم افزار Fluent انجام شده­است. ابتدا سیستم مکش و دمش بصورت مجزا روی ایرفویل قرارگرفته و تاثیر زوایای مختلف دمش و مکش (30، 45 و 90 درجه) به همراه مکان آنها (نسبت فاصله 0، 1/0، 2/0، 3/0، 6/0، 7/0 و 8/0) بررسی شده است. در این بررسی، نسبت نیروی برآ به پسا، ضریب فشار، خطوط همتراز سرعت و فشار در حالت­های مختلف نسبت به حالت بدون دمنده و مکنده مقایسه شده است. در ادامه، سیستم دمش و مکش همزمان بررسی گردید. نتایج این بررسی نشان داد که مکش در نزدیکی لبه­ی حمله و دمش در قسمت انتهایی ایرفویل موجب بهبود عملکرد آیرودینامیکی می­شوند که بهترین عملکرد برای دمش در فاصله 6/0طول وتر و مکش در فاصله 1/0 بود که موجب افزایش 55 درصدی نسبت برآ به پسا در مقایسه با حالت بدون دمش و مکش شده­است.

کلیدواژه‌ها

موضوعات


[1] سمایی ر. و فدائی م.، کنترل جدایش لایه مرزی روی ایرفویل با استفاده از جت دمش و ارائه تابع رگرسیون مستقل به منظور تخمین مستقیم ضرایب آیرودینامیکی. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 52، ش. 1، ص 333-337، 1401.
[2] Sharafi A., Al Havaz M., Effect of Steady Spanwise Blowing on the Aerodynamic Coefficients of a Maneuverable Aircraft Wing Model. Amirkabir J. Mech. Eng., Vol. 52, No. 11, pp. 3001–3014, 2021.
[3] Abdolahipour S., Mani M., Shams Taleghani A., Experimental Investigation of Flow Control on a High-Lift Wing Using Modulated Pulse Jet Vortex Generator. J. Aerosp. Eng., Vol. 35, No. 5, pp. 05–22, 2001.
[4] Abdolahipour S., Mani M.,  Shams Taleghani A., Pressure Improvement on a Supercritical High-Lift Wing Using Simple and Modulated Pulse Jet Vortex Generator. Flow Turbul. Combust, Vol. 109, No. 1, pp. 65–100, 2022.
[5] Taleghani S., Numerical and Parametric investigation of Suction over a Cylinder for Reduction of Flow Unsteadiness and vortex. J. Mech. Eng., Vol. 49, No. 3, pp. 183–192, 2019.
[6] Wang L., Alama Md. M., Rehman S., Zhou Y., Effects of Blowing and Suction Jets on the Aerodynamic Performance of Wind Turbine Airfoil. J.Renewable Energy.,Vol. 196, No.1, pp. 52–64, 2022.
[7] Abbasi S., Esmailzadeh V., Effects Of Simultaneous Suction and Blowing Over An Airfoil On Flow Behavior And Aerodynamic Coefficients. J. Energy Environ., Vol. 13, No. 4, pp. 424–432, 2022.
[8] Fatahian E., Fatahian H., Simultaneous Effect of Suction and Cavity for Controlling Flow Separation on NACA 0012 Airfoil–CFD Approach. Gazi Univ. Journal of Science.,Vol. 34, No. 1, pp. 235–249, 2021.
[9] Abasi S., Influence of different blowing parameters on flow control on an airfoil. Journal of Mechanical Engineering Sciences (JMES), Vol. 16, No. 1, pp. 8811–8819, 2022.
[10] Abdolahipour S., Mani M., Shams Taleghani A., Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics. Physica Scripta., Vol. 96, No. 12, pp. 27–41, 2021.
[11] Abdolahipour S., Mardani A., Shams Taleghani A.,Effects of pulsed counter flow jets on aerothermodynamics performance of a Re-Entry capsule at supersonic flow. Aerospace  Knowledge and  Technolog Journal., Vol. 05, No. 1, pp. 55–65, 2016.
[12] Kornilov, V. I., Current state and prospects of researches on the control of turbulent boundary layer by air blowing. Progress in Aerospace Sciences, Vol. 76, pp. 1-23, 2015.
[13] Sharafi A., A. and Allaie, M., “Numerical study of the effect of riblet on the aerodynamic coefficients of an airfoil. In 18th International Conference of Iran Aerospace Association Amirkabir University of Technology, Tehran, Iran,  2017.
[14] Hwang, D. P., A proof of concept experiment for reducing skin friction by using a micro-blowing technique. In 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA,  1997.
[15] Kametani Y., Fukagata K.,Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. Journal of Fluid Mechanics, Vol. 681, No.1, pp.154-172, 2011.
[16] Kametani Y., Fukagata K., Örlü R., Schlatter P., Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. International Journal of Heat and Fluid Flow, Vol. 55, No.1, pp. 132-142, 2015.
[17] Park J., Choi H., Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow. Physics of Fluids, Vol. 11, No. 10, pp. 3095-3105, 1999.
[18] Stroh A., Hasegawa Y., Schlatter P., Frohnapfel B., Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer. Journal of  Fluid Mechanics, Vol. 805, pp. 303-321, 2016.
[19] Atzori  M., Vinuesa R., Fahland G., Stroh A., Gatti D., Frohnapfel B., Schlatter P., Aerodynamic Effects of Uniform Blowing and Suction on a NACA4412 Airfoil. Flow Turbulence and Combustion., Vol. 105, No. 3, pp. 735-759, 2020.
[20] Goodarzi M., Rahimi M., Fereidouni R., Investigation of Active Flow Control over NACA0015 Airfoil Via Blowing. International Journal of Aerospace Sciences, Vol. 1, No. 4, pp. 57-63, 2012.
[21] Menter F. R., Langtry R., Völker S., Transition Modelling for General Purpose CFD Codes.  Flow Turbulence Combust, Vol. 77, No. 1–4, pp. 277-303, 2006.
[22] Walters D. K., Leylek J. H., A new model for boundary layer transition using a single-point RANS approach. Journal of Turbomachinery, Vol. 126, No. 1, pp. 193-202, 2004.
[23] Ahmed T., Amin Md. T., Islam S., Ahmed S., Computational study of flow around a NACA 0012 wing flapped at different flap angles with varying Mach numbers. Global Journal of Researches in Engineering, Vol. 13, No. 4, pp. 4-16 , 2013.