]1[ تقی جراح ح. محتسبی س. احمدی ح. و ستاری نجف آبادی م.، مطالعه آزمایشگاهی افزایش ضریب انتقال حرارت سیستم خنک کاری تراکتور با استفاده از فن آوری جدید نانوسیالات. ششمین همایش ملی ایده های نو در کشاورزی، اصفهان، 1390.
[2] Alves, L. O. F. T., Henríquez, J. R., da Costa, J. Â. P., & Abramchuk, V. (2022). Comparative performance analysis of internal combustion engine water jacket coolant using a mix of Al2O3 and CuO-based nanofluid and ethylene glycol. Energy, 250, 123832..
[3] Peyghambarzadeh S.M., Hashemabadi S. H., Seiji Jamnani M., Hoseini S. M., Improving the cooling performance of automobile radiator with Al2O3 /water nanofluid. Applied Thermal Engineering. 31:1833–1838, 2011(a).
[4] Tijani, A. S., & bin Sudirman, A. S. (2018). Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator. International Journal of Heat and Mass Transfer, 118, 48-57.
]5[ نوریان, سجاد, پاسدار شهری, هادی. (1397). بررسی و مقایسه تجربی و عددی عملکرد رادیاتور قرنیزی و رادیاتور پانلی. مهندسی مکانیک دانشگاه تبریز، 48(3)، 346-399.
]6[ حاجتزاده پردنجانی, احمد, رئیسی, افراسیاب, قاسمی, بهزاد. (1398). اثرات تلفات لزجت بر انتقال گرمای جابهجایی اجباری نانوسیال درون یک میکروکانال با حضور میدان مغناطیسی. مهندسی مکانیک دانشگاه تبریز، 49(1)، 92-83.
[7] Saripella S.K., Yu W., Routbort J.L., France D.M., Rizwan-uddin., Effect of nanofluid coolant in a class 8 truck engine. Sae Technical paper series, 2007.
[8] Putra N., Maulana S., Heat transfer enhancement of nanofluids in car radiator. 7th JSME-KSME Thermal and Fluids Engineering Conference (TFEC 2008), 2008.
[9] Vasu V., Krishna K.R., Kumar A.C.S., Thermal design analysis of compact heat exchanger using nanofluids. International Journal of Nanomanufacturing, 2008.
[10] Vajjha R.S., Das D.K., Namburu P.K., Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. International Journal of Heat and Fluid Flow, 31, 613-621, 2010.
[11] Xie H., Li Y., Yu W., Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows. Phys Lett A;374:2566-8, 2010.
[12] Leong K.Y., Saidur R., Kazi S. N., Mamun A. H., Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering 30: 2685-2692, 2010.
[13] Peyghambarzadeh SM., Hashemabadi SH., Hoseini SM., Seifi JM., Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. International Communities Heat Mass Transfer;38:1283e90, 2011.
[14] Peyghambarzadeh SM., Hashemabadi SH., Naraki M., Vermahmoudi Y., Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl Therm Eng;52:8e16, 2013.
[15] Naraki M., Peyghambarzadeh SM., Hashemabadi SH., Vermahmoudi Y., Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. International Journal in Thermal Science;66:82e90, 2013.
[16] Hussein AM., Bakar RA., Kadirgama K., Sharma KV., Heat transfer enhancement using nanofluids in an automotive cooling system. Int Commun Heat Mass Transfer;53:195e202, 2014.
[17] Muhammad Ali H., Ali H., Liaquat H. and Bin Maqsood H. T., Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator Using ZnOWater Nanofluids. Journal of Elsevier, Energy, 1-8, 2015.
[18] Raja M., Vijayan R., Dineshkumar P., Venkatesan M., Review on nanofluids characterization, heat transfer characteristics and applications. Renewable and Sustainable Energy Reviews 64:163-173, 2016.
[19] Bozorg Bigdeli M., Fasano M., Cardellini A., Chiavazzo E., Asinari P., A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications. Renewable and Sustainable Energy Reviews 60: 1615-1633, 2016.
[20] Heydarbeigi G., Investigation of the effect of using copper nanofluid, silver nanofluid and aluminum oxide on the heat transfer rate of Ferguson 285 copper tractor engine radiator. First International Conference on Applied Research in Agricultural Sciences, Natural Resources and Environment, 2017.
]21[ رحمتی نژاد ب .عباسقلی پور م. و محمدی الستی ب.، ارزیابی تجربی انتقال حرارت رادیاتور تراکتور MF 285 با استفاده از نانو سیالAL2O3+water . ماشین های کشاورزی، 1401.
[22] Nor Azwadi C. S., Muhammad Noor A. W. M. Y., Rizalman M., Recent advancement of nanofluids in engine cooling system. Renewable and Sustainable Energy Reviews, 2016.
]23[ ایزدخواه ش. عرفان نیا ح. و مرادخانی ح.، بررسی خصوصیات ترموفیزیکی نانوسیالات بر پایه آب-اتیلن گلیکول با استفاده از روشهای شبیهسازی دینامیک مولکولی غیرتعادلی و دینامیک سیالات محاسباتی. مهندسی مکانیک مدرس. ۱۶ (۷) :۱۶۲-۱۵۳، ۱۳۹۵.
[24] Ahmadi, M. H., Ghazvini, M., Maddah, H., Kahani, M., Pourfarhang, S., Pourfarhang, A., & Heris, S. Z. (2020). Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm. Physica A: Statistical mechanics and its Applications, 546, 124008.
[25] Pak B. C., and Cho Y. I., Hydraulic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, vol. 11(2), pp. 151-170, 1998.
[26] Ho C., Liu W., Chang Y., Lin C., Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci, 49:1345–53, 2010.
[27] Corcione M., Empirical correlating equations for predicting the e_ective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag, 52, 789–793, 2011.
[28] Turgut A., Tavman I., Chirtoc M., Schuchmann H. P., Sauter C., Tavman S., Thermal conductivity and viscosity measurements of waterbased TiO2 nanofluids. International Journal of Thermophysics 30 (4):1213–1226, 2009.
[29] Bahiraei M., Hosseinalipour S. M., Zabihi K., Using neural network for determination of viscosity in water-TiO2 nanofluid. Advances in Mechanical Engineering 4:742-680, 2012.
[30] Fan X., Chen H., Ding Y., Plucinski P. K., Lapkin A. A., Potential of ‘nanofluids’ to further intensify microreactors. Green Chemistry 10 (6): 670–677, 2008.
[31] Ghadimi A., Metselaar I. H., The influence of surfactant and ultrasonic processing on improvement of stability. thermal conductivity and viscosity of titania nanofluid. Experimental Thermal and Fluid Science 51:1–9, 2013.
[32] Yiamsawas T., Dalkilic AS., Mahian O., Wongwises A., Measurement and correlation of the viscosity of waterbased Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports. Journal of Dispersion Science and Technology 34 (12): 1697–1703, 2013.
[33] Hamilton R. O. K., CrosserIndustrial and Engineering Chemistry Fundamental,1(3), 187, 1962.
[34] Wen D., Lin G., Vafaei S., Review of nanofluids for heat transfer applications. Particuology, 7:141–50, 2009.
[35] Hussein AM., Bakar RA., Kadirgama K., Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Studies Thermal Engineering 2:50–61, 2014.
[36] Holman J.P., Heat Transfer. McGraw-Hill Book Co., New York, 1989.
[37] Yu W., Nanofluids for Thermal Conditions-Underhood Heat Transfer. Argonne National Laboratory, 2009.
[38] Kouloulias K., Sergis A., Hardalupas Y., Sedimentation in nanofluids during a natural convection experiment. International Journal of Heat and Mass Transfer 101: 1193-1203, 2016.
[39] Wu S., Zhu D., Li X., Lei J., Thermal energy storage behavior of Al2O3-H2O nanofluids. Thermochimica Acta, 483(1-2) 73-77, 2009.
[40] Heyhat MM., Kowsary F., Rashidi AM., Alem Varzane Esfehani S., Amrollahi A., Experimental investigation of turbulent flow and convective heat transfercharacteristics of alumina water nanofluids in fully developed flow regime. International Communication in Heat and Mass Transfer 39:1272–1278, 2012.
[41] Pak B. C., and Cho Y. I., Hydraulic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11(2):151-170, 1998.
[42] Pandey SD., Nema V. K., Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Experimental Thermal and Fluid Science 38:248–56, 2012.
[43] Wang X., Xu X., Choi SUS., Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics and Heat Transfer 13:474–80, 1999.
[44] Nguyen C., Desgranges F., Roy G., Galanis N., Mare T., Boucher S., Mintsa H. A., Viscosity data for Al2O3–water nanofluid–hysteresis: is heat transfer enhancement using nanofluids reliable?. International Journal of Thermal Sciences 47:103–111, 2008.
[45] Williams WC., Buongiorno J., Hu WL., Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer 130:042412-7, 2008.
[46] Maxwell Garnett J., Colours in metal glasses and in metallic films. Philosophical Transactions the Royal Society 203: 385-420, 1904.
[47] Datta N.M, Sandeep S., Experimental Analysis of Heat Transfer From Car Radiator Using Nanofluids. Vol 2, 4, 2014.
[48] Kays W.M., Numerical solutions for laminar-flow heat transfer in circular tubes. Trans. ASME, 77, 1265, 1955.
[49] N. Bozorgan, K. Krishnakumar and N. Bozorgan, "Numerical Study on Application of CuO-Water Nanofluid in Automotive Diesel Engine Radiator," Modern Mechanical Engineering, Vol. 2 No. 4, 2012, pp. 130-136.
[50] Fakhari, M. M., & Sheikhzadeh, G. A. (2020). Heat Transfer and Pressure Drop of Al2O3-Ethylene Glycol-water Nanofluid as the Coolant in an Automotive Radiator.