اثر کاهش فشار شبکه توزیع گاز بر میزان هدر رفت گاز، اتلاف اگزرژی و پایداری شبکه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی انرژی، دانشگاه صنعتی قوچان، قوچان، ایران

2 استادیار، گروه مهندسی مکانیک، مجتمع آموزش عالی گناباد، گناباد، ایران

3 کارشناسی ارشد، گروه مهندسی مکانیک، موسسه آموزش عالی پیروزان، فردوس، ایران

چکیده

گاز طبیعی با استفاده از خطوط انتقال فشار بالا از پالایشگاهها به نقاط مصرف منتقل میشود. سپس فشار گاز در ایستگاههای دروازه شهری به psi 250 کاهش می‌یابد. در ایستگاه حاشیه شهری با کاهش فشار به psi 60، گاز به خطوط انتقال داخل شهری تزریق می‌شود. در این مطالعه اثر کاهش فشار به کمتر از psi 60 بر هدر رفت گاز، اتلاف اگزرژی و پایداری شبکه بررسی شده است. داده‌های آزمایشگاهی برای شهر اسلامیه واقع در خراسان جنوبی اندازه‌گیری شده است. نتایج بیانگر این است که با کاهش فشار خط تغذیه از psi 60 به psi 30، هدررفت گاز به‌ترتیب در دوره زمستانه و تابستانه %35 و %73 کاهش می یابد. در فشار psi 60، بیشینه اتلاف اگزرژی در رگلاتور مصرف اتفاق می‌افتد که قابل جبران نیست. در حالی‌که در فشارهای کمتر از فشار psi 60 بیشترین اتلاف اگزرژی در ایستگاه ناحیه شهری اتفاق می‌افتد. بنابراین در فشارهای پایین می‌توان با نصب توربین انبساطی به جای شیر اختناق بازگشت ناپذیری را کاهش داد. با بررسی پایداری شبکه، کاهش فشار خط تغذیه به psi 30 به شرکت ملی گاز پیشنهاد میشود.

کلیدواژه‌ها

موضوعات


[1] Rosen M. and Dincer I., Exergy–cost–energy–mass analysis of thermal systems and processes. Energy Conversion and Management 44(10): p. 1633-1651, 2003.
[2] Neseli M.A., Ozgener O. and Ozgener L., Energy and exergy analysis of electricity generation from natural gas pressure reducing stations. Energy Conversion and Management  93: p. 109-120, 2015.
[3] Farzaneh-Gord M., et al., Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters. Renewable Energy 72: p. 258-270, 2014.
[4] Arabkoohsar A., et al., A new design for natural gas pressure reduction points by employing a turbo expander and a solar heating set. Renewable Energy 81: p. 239-250, 2015.
[5] Farzaneh-Gord M., et al., Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption. Energy 83: p. 164-176, 2015.
[6] Zabihi A. and Taghizadeh M., Feasibility study on energy recovery at Sari-Akand city gate station using turboexpander. Journal of Natural Gas Science and Engineering 35: p. 152-159, 2016.
[7] ابراهیمی مقدم، ا.، فرزانه گرد، م.، دیمی دشت بیاض، م.، محاسبه میزان هدر رفت گاز طبیعی از یک حفره در خطوط لوله توزیع گاز زیر زمینی، نشریه مهندسی مکانیک دانشگاه تبریز، 47(3) ، ص. 1-10، 1396.
[8] Olfati M., et al., A comprehensive analysis of energy and exergy characteristics for a natural gas city gate station considering seasonal variations. Energy 155: p. 721-733, 2018.
[9] Arabkoohsar A. and Andresen G., A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling. Renewable energy 115: p. 489-500, 2018.
[10] Ghaebi H., et al., Energy, exergy, economic and environmental (4E) analysis of using city gate station (CGS) heater waste for power and hydrogen production: A comparative study. International Journal of Hydrogen Energy 43(3): p. 1855-1874, 2018.
[11] Saadat-Targhi M. and Khanmohammadi S., Energy and exergy analysis and multi-criteria optimization of an integrated city gate station with organic Rankine flash cycle and thermoelectric generator. Applied Thermal Engineering 149: p. 312-324, 2019.
[12] Ranjbar B., Rahimi M and Mohammadi F., Exergy Analysis and Economical Study on Using Twisted Tape Inserts in CGS Gas Heaters. International Journal of Thermophysics 42(7): p. 1-19, 2021.
[13] Shokouhi Tabrizi A.H., et al., Energy, exergy and economic analysis of utilizing the supercritical CO2 recompression Brayton cycle integrated with solar energy in natural gas city gate station. Journal of Thermal Analysis and Calorimetry 145(3): p. 973-991, 2021.
[14] Deymi-Dashtebayaz, M., D. Dadpour, and J. Khadem, Using the potential of energy losses in gas pressure reduction stations for producing power and fresh water. Desalination 497: p. 11476, 2021.
[15] Kotas T.J., The exergy method of thermal plant analysis, Elsevier, 2013.
[16] Safarzadeh S., et al., Energy and entropy generation analyses of a nanofluid-based helically coiled pipe under a constant magnetic field using smooth and micro-fin pipes: Experimental study and prediction via ANFIS model. International Communications in Heat and Mass Transfer 126: p. 10540, 2021.
[17] Swamee P.K. and Jain A.K., Explicit equations for pipe-flow problems. Journal of the hydraulics division 102(5): p. 657-664, 1976.
[18] Katz D.L.V., Handbook of natural gas engineering,  McGraw-Hill, 1959.