مطالعه عددی راندمان احتراق و افت فشار در احتراق مافوق صوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

مطالعه‌ای عددی برای بررسی پدیده احتراق در محفظه احتراق موتور اسکرمجت همراه با تزریق سوخت از یک گوه‌ی با زوایای مختلف (11، 12، 17 و 20 درجه) انجام شد. در این محفظه احتراق، هوا با عدد ماخ 2 و سوختِ هیدروژن با عدد ماخ نزدیک 1 وارد می‌شوند. میدان جریان آشفته مورد نظر توسط معادلات میانگین‌گیری شده ناویر-استوکس (RANS) در حالت پایا شبیه‌سازی شد. در این شبیه‌سازی از مدل آشفتگی Realizable برای مدل-سازی آشفتگی و از مدل نرخ محدود/ اضمحلال گردابه برای مدل‌سازی احتراق استفاده شد. مقایسه‌ای نیز بین نتایج روش عددی و نتایج روش تجربی انجام شد که دقت و قابلیت شبکه محاسباتی و روش عددی را برای مطالعه جریان مذکور نشان داد. نتیجه حاصله این بود که با افزایش زاویه گوه، بازده احتراق از نزدیک 63 درصد تا 67 درصد افزایش می‌یابد اما در طرف دیگر با افزایش زاویه، امواج ضربه‌ای تقویت می‌شوند و افت فشار کل نیز بیش‌تر می‌شود. بدین ترتیب برای داشتن حالت بهینه برای تولید نیروی رانش، باید مصالحه‌ای بین راندمان احتراق و افت فشار کل توسط طراح انجام بگیرد.

کلیدواژه‌ها

موضوعات


[1]  Villasenor R., Ghent J.-Y.and Pitzt R. W., Modeling Ideally Expanded Supersonic Turbulent Jet Flows with Nonpremixed H2-Air Combustion, AIAA JOURNAL, Vol. 30, 1992.
[2]  Evans J. S., Schexnayder C. J. and Beach H. L., Application of a Two-Dimensional Parabolic Computer Program to Prediction of Turbulent Reacting Flows, NASA TP-1169, 1978.
[3]  Northam G. B., Greenberg I., Byington C. S.and Capriotti D. P., Evaluation of Parallel Injector Configurations for Mach 2 Combustion, JOURNAL OF PROPULSION AND POWER, Vol. 8, 1992.
[4]  FUJIMORI T., MURAYAMA M., SATO J., KOBAYASHI H.and NIIOKA T., FLAME-HOLDING BEHIND A WEDGE BY INCIDENT SHOCK WAVES, in SPRINGER SCIENCE+BUSINESS MEDIA, B.V., Poitiers, France, 1995.
[5]  Tabejamaat S., Ju Y. and Niioka T., Numerical Simulation of Secondary Combustion of Hydrogen Injected from Preburner into Supersonic Airflow, AIAA JOURNAL, Vol. 35, 1997.
[6]  Baurle R. A., Fuller R. P., White J. A., Chen T. H., Gruber M. R.and Nejad A. S., An Investigation of Advanced Fuel Injection Schemes for Scramjet Combustion, American Institute of Aeronautics and Astronautics, Inc., 1997.
[7]  Gerlinger P., Stoll P., Kindler M., Schneider F. and Aigner, M., Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity, Aerospace Science and Technology, Vol. 12, p. 159–168, 2008.
[8]  Huang W., Pourkashanian M., Ma L., Ingham D. B., Luo S. B. and Wang Z. G., Investigation on the flameholding mechanisms in supersonic flows: backward-facing step and cavity flameholder, Journal of Visualization, Vol. 14, p. 63–74, 2010.
[9]  Mai T., Sakimitsu Y., Nakamura H., Ogami Y., Kudo T.and Kobayashi H., Effect of the incident shock wave interacting with transversal jet flow on the mixing and combustion, Proceedings of the Combustion Institute, Vol. 33, p. 2335–2342, 2011.
[10]             Tahsini A. M., The Effects of Pressure Fluctuations on the Hydrogen Jet Combustion in a Supersonic Cross Flow, Heat and Mass Transfer Research Journal, Vol. 2, 2018.
[11]             Tahsini A., Combustion efficiency and pressure loss balance for the supersonic combustor, Journal of Aerospace Engineering, Vol. 234, pp. 1149 - 1156, 2019.
[12]             Waidmann W., Alff F., Brummund U., Bohm M., Clauss W.and Oschwald M., Experimental Investigation of Combustion Process in a Supersonic Combustion Ramjet (SCRAMJET), 1994.
[13]             Aravind S. and Kumar R., Supersonic combustion of hydrogen using an improved strut injection scheme, International journal of hydrogen energy, Vol. 44, pp. 6257-6270, 2019.
[14]              ز. شمس and م. باغبان, احتراق در انسیس فلوئنت, تهران: انتشارات آریا دانش, 1398.
[15]             ANSYS FLUENT Theory Guide, ANSYS, Inc., 2011.
[16]             Choubey G.and Pandey K., Effect of variation of angle of attack on the performance of two-strut scramjet combustor, International journal of hydrogen energy, Vol. xxx, pp. 1-16, 2016.
[17]             Oevermann M., Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling, Aerosp. Sci. Technol., Vol. 4, p. 463–480, 2000.