مدلسازی و مقایسه عملکرد آیرودینامیکی توربین بادی محور عمودی دو پره ای و سه پره ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه ارومیه، ارومیه، ایران

چکیده

در این مطالعه، ابتدا یک توربین بادی محور عمودی سه­ پره­ای با پره­های مستقیم به­روش دینامیک سیالات محاسباتی و به صورت سه­بعدی مدلسازی شده و نتایج حاصل با نتایج آزمایشگاهی سایر پژوهشگران اعتبارسنجی شده­است. سپس یک توربین بادی دو پره­ای با پره­های مستقیم و با همان شرایط حل قبلی مدلسازی شده و مشخصات آیرودینامیکی و عملکرد آن با نتایج بدست آمده برای توربین سه­پره­ای مقایسه شده­است. مقایسه مشخصات آیرودینامیکی برای دو توربین بادی، با سرعت­های در نوک پره مختلف و با توجه به بیشترین توان تولید شده توسط توربین موردنظر در هر سرعت در نوک پره انجام شده­است. نتـایج حاصل نشان می­دهد که در نمونه­های مورد بررسی، توربین بادی دوپره­ای با وجود صلبیت کم نسبت به توربین سه ­پره­ای، دارای بازده خوبی می­باشد و بیشترین اختلاف بین ضرایب توان این دو توربین در نسبت سرعت در نوک پره 55/2 اتفاق می­افتد. علاوه بر این، در این مطالعه توان تولیدی توربین دو پره­ای در مقایسه با توربین سه ­پره­ای به میزان 54 % بیشتر است که این خود به صرفه بودن و کارا بودن توربین دو پره­ای مورد بررسی را تصدیق می­کند.

کلیدواژه‌ها

موضوعات


[1] Park K. S., AsimT. andMishra R., Computational fluid dynamics based fault simulations of a vertical axis wind turbines. Journal of Physics: Conference Series, Vol. 364, No. 1, pp. 012138, 2012.
[2] Blackwell B. F., Vertical-axis wind turbine: how it works (No. SLA-74-0160). Sandia Labs., Albuquerque, N. Mex.(USA), 1974.
[3]  JooS., Choi H. andLee J., Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds, Energy,Vol. 90, pp.439-451, 2015.
[4] Blackwell B. F., SheldahlR. E. andFeltzL. V., Wind tunnel performance data for the Darrieus wind turbine with NACA0012 blade. (No. SAND-76-0130). Sandia Labs., Albuquerque, N. Mex.(USA), 1976.
[5] SheldahlR. E. andKlimasP. C., Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines (No. SAND-80-2114). Sandia National Labs., Albuquerque, NM (USA), 1981.
[6] R. E. Sheldahl, P. C. Klimas, L. V. Feltz, Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades. National Technical Information Service, 1980.
[7] AshwillT. D., Measured data for the Sandia 34-meter vertical axis wind turbine. Sandia National Laboratories, 1992.
[8] Carrie T. G. andNord A. R., Modal testing of a rotating wind turbine. In Proc Sixth Biennial Wind Energy Conf and Workshop, pp. 825-34, 1983.
[9] Veers P., Modeling stochastic wind loads on vertical axis wind turbines. In 25th Structures, Structural Dynamics and Materials Conference, p. 910, 1984.
[10] OlerJ. W., Strickland J. H., ImB. J. andGraham G. H., Dynamic stall regulation of the Darrieus turbine. Albuquerque, NM: Sandia National Laboratories, 1983.
[11] Bai C. J., Lin Y. Y., Lin S. Y. andWang W. C., Computational fluid dynamics analysis of the vertical axis wind turbine blade with tubercle leading edge. Wind Energy, Vol. 15, pp. 349–361, 2015.
[12] CastelliM. R. andBeniniE.,Effect of blade thickness on Darrieus Vertical-Axis Wind turbine performance,Applied energy, Vol. 101, pp. 765‐775, 2013.
[13] UntaroiuA., Wood H. G., AllaireP. E. andRibandoR. J.,Investigation of self-starting capability of vertical axis wind turbines using a computational fluid dynamics approach. Journal of Solar Energy Engineering,  Vol. 133, No. 4, pp. 1087–1109, 2011.
[14] Bose S., PremsaiT. P., PrithvirajP., MugundhanV. and VelamatiR. K., Numerical analysis of effect of pitch angle on a small scale vertical axis wind turbine. International Journal of Renewable Energy Research (IJRER), Vol. 4, No. 4, pp. 929-935, 2014.
[15] Howell R., Qin N., Edwards J. andDurraniN., Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable energy, Vol. 35, No. 2, pp. 412-422, 2010.
[16] Surface Meteorology and Solar Energy, a Renewable Energy Resource, Accessed on 10 November 2017; https://eosweb.larc.nasa.gov.