Determination of the thermal class of 800KVA compact electric power substation made by Irantransfo Substations Development Company

J. Ghasemi
Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran

M. Cheraghi
Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran

Abstract
In this research, the compact power substation with 800KVA capacity that is produced by Irantransfo Substations Development Company, has been modeled and its thermal class is determined. Modeling of this compact power substation that include a three-phase cast resin dry transformer placed in the enclosure chamber carried out in three-dimension. Then the desired parameters such as fluid flow, pressure drop and temperature distribution in significant parts are investigated. In order to verify the accuracy of the results, four sensors were placed in suitable locates to compare the results of the analysis with the measured values of these sensors. The results of the modeling in comparison with the experimental results show a difference of up to 5.8K. By applying data according to IEC62271-202 standard and appropriate boundary conditions, the maximum temperature difference which occurs in low voltage bobbin is 12K. So the thermal class will be 15K according standard definition. Although it was 14% lower than the laboratory results, the thermal class of this substation also determined in the Laboratory of Electrical Industries of Iran 15K and indicate the good results of this study.

Keywords: Thermal class of compact electric power substation, Power transformer bobbins cooling, 3D modeling, IEC62271-202 standard.
\[
\begin{aligned}
\frac{\partial}{\partial t} \left[\frac{\rho}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)^2 \right] + \frac{\partial}{\partial x} \left(\rho u \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right) + \frac{\partial}{\partial y} \left(\rho v \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right) &= -\frac{\partial p}{\partial x} \\
\frac{\partial}{\partial t} \left[\frac{\rho}{2} \left(\frac{\partial w}{\partial z} \right)^2 \right] + \frac{\partial}{\partial z} \left(\rho w \left(\frac{\partial w}{\partial z} \right) \right) &= -\frac{\partial p}{\partial z} \\
\frac{\partial}{\partial t} \left[\frac{\mu}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)^2 \right] + \frac{\partial}{\partial x} \left(\mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right) + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right) &= \frac{\partial}{\partial x} \left(\rho \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\rho \frac{\partial u}{\partial y} \right) \\
\frac{\partial}{\partial t} \left[\frac{\mu}{2} \left(\frac{\partial w}{\partial z} \right)^2 \right] + \frac{\partial}{\partial z} \left(\mu \left(\frac{\partial w}{\partial z} \right) \right) &= \frac{\partial}{\partial x} \left(\rho \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(\rho \frac{\partial w}{\partial y} \right) \\
\end{aligned}
\]
با در نظر گرفتن متداو صفر برای $K, ε, V^*, α^*$، معادلات فوق جبران آر ام با ویژه‌های داده‌ای برای پارامترهای دقیق مدل سازی و تحلیل خواص هوا منیبرگ با دما در نظر گرفته که در جدول 1 پارامترهای موجود نیاز به محاسبه دماهای لازم اورده شده است.

جدول 1 - خواص فیزیکی هوا بر حسب دما

<table>
<thead>
<tr>
<th>T [k]</th>
<th>P [mbar]</th>
<th>Cρ</th>
<th>$\mu \times 10^6$</th>
<th>κ</th>
<th>$\alpha \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.1436</td>
<td>0.794</td>
<td>0.000372</td>
<td>1.0192</td>
<td>2.0166</td>
</tr>
</tbody>
</table>

بر اساس مقادیر جدول 1 معادلات (9) برای پارامترهای مورد نظر برای برای پارامترهای استفاده شده است:

$$\rho = 4 \times 10^{13} T - 8 \times 10^{13} T^2 + 6 \times 10^{12} T^3 - 0.02487 + 4.7708$$

(9)

$$Cρ = 5 \times 10^{12} T - 9 \times 10^{12} T^2 + 6 \times 10^{12} T^3 - 0.00167 + 1.1575$$

(10)

$$\mu \times 10^6 = -3 \times 10^{14} T^4 + 9 \times 10^{14} T^3 - 6 \times 10^{14} T^2 - 0.01877^2 + 3.1509 T - 213.2$$

(11)

$$k = 10^{14} T^3 - 5 \times 10^{14} T^2 + 0.01037 - 0.0676$$

(12)

$$\alpha \times 10^4 = 10^4 T^2 + 0.0007 T - 0.1148$$

3- مدل سازی و تحلیل عددي

هنده سرود پلنگی تطبیق شکل 1 تراسفیروتر زنده نشکل رزینی سه فاز با توان 800kVA می‌باشد که در انگلیسی به طول 180 میلیمتر و عرض 220 میلیمتر فاراگنه استفاده که سطح سطح میانی و سنگی منتشر به ناحیه سطح میانی و سنگی منتشر است. بنا به دلایل ناپذیری برای بررسی تولیدی تجهیزات در انگلیسی کاربردی در مقایسه با تراسفیروت و برای در این مدل همچنین ضرایب بکار در این معادلات به صورت زیر انتخاب شده است.

$$C_1 = 1.44, C_2 = 1.92, C_3 = 0.7, C_4 = 0.09, \sigma_y = 1.30, \sigma_x = 1.30, Pr = 0.71$$

$$\frac{\partial T}{\partial t} + \frac{\partial(Tu)}{\partial x} + \frac{\partial(Tv)}{\partial y} + \frac{\partial(Tw)}{\partial z} =$$

$$\left[\frac{\partial}{\partial x}\left[(k + \alpha^2) \frac{\partial T}{\partial x}\right]\right] + \left[\frac{\partial}{\partial y}\left[(k + \alpha^2) \frac{\partial T}{\partial y}\right]\right] + \left[\frac{\partial}{\partial z}\left[(k + \alpha^2) \frac{\partial T}{\partial z}\right]\right]$$

(5)

$$\frac{\partial K}{\partial t} + \frac{\partial (uK)}{\partial x} + \frac{\partial (vK)}{\partial y} + \frac{\partial (wK)}{\partial z} =$$

$$\nu \left[\frac{\partial}{\partial x}\left[(\nu + \alpha^2) \frac{\partial K}{\partial x}\right]\right] + \left[\frac{\partial}{\partial y}\left[(\nu + \alpha^2) \frac{\partial K}{\partial y}\right]\right]$$

(6)

$$\frac{\partial}{\partial x}\left[2 \left(\frac{\partial T}{\partial x}\right)^2 + 2 \left(\frac{\partial T}{\partial y}\right)^2 + 2 \left(\frac{\partial T}{\partial z}\right)^2\right] - \beta \frac{\partial^2 T}{Pr \partial y}$$

(7)

$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial (u\varepsilon)}{\partial x} + \frac{\partial (v\varepsilon)}{\partial y} + \frac{\partial (w\varepsilon)}{\partial z} =$$

$$\nu \left[\frac{\partial}{\partial x}\left[(\nu + \alpha^2) \frac{\partial \varepsilon}{\partial x}\right]\right] + \left[\frac{\partial}{\partial y}\left[(\nu + \alpha^2) \frac{\partial \varepsilon}{\partial y}\right]\right] + C_1 \nu \frac{\varepsilon}{K} \left(\frac{\partial \varepsilon}{\partial x} + \frac{\partial \varepsilon}{\partial y}\right)$$

(9)

$$\frac{\partial \frac{\partial T}{\partial y}}{\partial x}\left(2 \left(\frac{\partial T}{\partial x}\right)^2 + 2 \left(\frac{\partial T}{\partial y}\right)^2 + 2 \left(\frac{\partial T}{\partial z}\right)^2\right) -$$

$$\frac{C_1 \varepsilon^2}{K} - C_2 \beta g \frac{V^*}{Pr} \frac{\partial T}{\partial y}$$

(10)

$$\varepsilon^* = \frac{\rho}{\rho^*} \frac{\varepsilon}{\nu}$$

(11)

$$\alpha^* = \frac{\nu V^*}{Pr}$$

(12)

$$\text{شکل 1- جانبهی تجهیزات پست مورد نظر}$$
شکل ۲- هندسه ساختمانی (ب) هندسه ساختمانی (الف) هندسه ساختمانی (ب)

شکل ۲- مدل کانی به همراه ترانسفر ماتور و دریچه‌های دیواره‌ها (ب) و نمای ساختمانی مدل سیسی‌پی نمایی در اطراف ترانسفر ماتور از شیکنبدی لایه برای افزایش دقت نیز در اطراف ترانسفر ماتور از شیکنبدی لایه مرزی استفاده شده است.

شکل ۳- مدل کانی به همراه ترانسفر ماتور به همراه دیواره‌های بیرونی و پنجره‌های ایجاد شده از در در شکل ۳ مدل ایجاد شده از دریچه‌های دیواره‌ای و جریان آن‌ها از نیاز می‌دهد. در مدل ایجاد شده دریچه‌های دیواره‌ای سمت چپ گردد و راست به چهار ناحیه مطلوبی شکل (الف) چهارتیزی علی‌اکثر نواحی مختلف این دریچه‌ها در شکل‌کاری، تغییر‌بندی بندی گردد است. ضمناً تغییر‌بندی دیواره‌ها سمت راست در جهت ارتفاع مشابه دیواره‌ها سمت چپ بوده و در شکل نشان داده شده است. یک دریچه مثلثی شکل در بالای دیواره‌های بیرونی به اندازه توان‌های فشار دیواره‌ها و فشاری خاصی و جریان گردد که جریان حاصل از شیکنبد دیواره‌ها را در نظر نگرفته و در وابسته به اندازه و فشار دیواره‌ها و در کنار دریچه‌ها فشرده می‌شود و در سایر نقاط از شیکنبدی استفاده گردد تا حجم محاسبات کاهش یابد. شکل ۴- مدل نمایی کلی از شیکنبدی استفاده را نشان می‌دهد.
1- شرایط مرزی

با توجه به اینکه طبق استاندارد، برای تعیین گرمایی از هما نظر گرمایی که عامل خارجی در آن نشی داشته باشد می‌تواند کار یابد که می‌تواند گرانی در تمامی مرزهای ورودی به صورت برای ورودی و در مرزهای خروجی به صورت خروجی و همچنین دامی مرزهای ورودی طبق استاندارد ۲۰۸ کلوین در نظر گرفته شده است. ترکیب گرمایی به نقله جریان و مشخصات بیوپلاستیک است. بر اساس اطلاعات گسپندیده از شرکت توسعه پستهای ایراننفتکس سازندی پست جردیده است. لذا

۲- بررسی نتایج

برای بررسی نتایج این استاندارد گردنده و بودن آن انجام گردیده است. جهت این بررسی، محاسبات سطحی مشخص به ترتیب در روی ورودی فشار متوسط هسته و بین فشار مشخص به مدل انجام شده و نتایج در نظر گرفته شده است. با توجه به اینکه، تمامی نتایج به شکل ۵ و ۶ محاسبات آن در حدود ۸۵۰ میلیون در نظر گرفته شده است. تحلیل جریان و استقلال گرمایی در سه شرایط مرزی بین شده برای مدل مورد نظر با استفاده از نرم‌افزار Ansys-Fluent ۱۸.۲ موادی دانشگاه زنجان انجام گردیده است. در شکل ۶ خطوط جریان از سند بیشتری که در شکل ۵ و ۷ بسته و بودن را تا خروجی یا کلینیک نشان می‌دهد.

شکل ۵- بررسی استقلال از شکل‌ها در سه نقطه مشخص در مدل

شکل ۶- بررسی جریان دو از شکل‌ها در سه نقطه مشخص در مدل

شکل ۷- بردارهای سرعت در صفحه گذرنده کمک و وسط هسته

شکل ۳- ناحیه پلاستیکی (ب) از ناحیه پلاستیکی (ب) از ناحیه پلاستیکی (ز)
موقتیت‌های مشخص بر روی هسته در ساق‌های V_b, V_c, W_b, W_c و W_a و W_b, V_b، به همچنین در شکل 8، توزیع دما در هسته و پویش‌های ترانسформه و دیواره‌های کابین برای حالتی که سندربه‌های 3 و 2 به هسته نشان داده شده است. توزیع دما در شکل حاکی از برخی دماهای بالاتر در اطراف پویش‌های این. همچنین شکل 6 توزیع دما در صفحه کمکی (گذرانه) از وسط هسته را در حالتی که سندربه‌های نواحی 2 و 3 به هسته نشان می‌دهد.

شکل 9 - توزیع فشار در ال‌ف اطراف هسته و پویش‌های ترانسفورماتور و دیواره‌های کابین. (ب) صفحه کمکی گذرانه از وسط هسته.

شکل 10 - محل نصب دماسنج‌ها در روی هسته را نشان می‌دهد. این دماسنج‌ها با استفاده از چپ آبسولوتیوم بر روی هسته ترانسفورماتور قبلاً شده‌اند.

شکل 11 - توزیع دما در هسته و پویش‌های ترانسفورماتور و دیواره‌های کابین برای حالتی که سندربه‌های 3 و 2 به هسته نشان داده شده است. این حاکی از ایجاد مکش در نواحی ورودی و افرات شار در نواحی بالای کابین است. همچنین شکل 9 - توزیع فشار در صفحه کمکی گذرانه از وسط هسته را در حالتی که سندربه‌های نواحی 2 و 3 به هسته نشان می‌دهد. برای صحت و سلامتی از نتایج تجزیه شرکت ازمین‌گاهی صنایع برای ایران که برای تعیین پله کرمانه این گونه ترانسفورماتور و ایرانی که برای شرکت می‌گیرد، استفاده شده است. به این نظر نمایانگیری ماهنگی آزمین‌گاهی به عدد دماسنج با شماره‌های 1, 2, 3 و 4 به ترتیب در
جدول 2- نتایج دماهای حاصل از تحلیل حاضر را در شرایط مشابه با نظام ازایماغه‌ای برای نقاط نصب در کهاره، روز و شب نشان می‌دهد.

<table>
<thead>
<tr>
<th>شرایط ازایماغه‌ای</th>
<th>دماهای حاصل</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>پایین</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>بالا</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>نیمه</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

جدول 3- نتایج دماهای حاصل از تحلیل حاضر در شرایط داخل کابین و دماهای خارج کابین.

<table>
<thead>
<tr>
<th>شرایط داخل</th>
<th>دماهای حاصل</th>
<th>شرایط خارجی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بالا</td>
<td>45</td>
<td>بالا</td>
</tr>
<tr>
<td>نیمه</td>
<td>35</td>
<td>نیمه</td>
</tr>
<tr>
<td>پایین</td>
<td>25</td>
<td>پایین</td>
</tr>
</tbody>
</table>

جدول 1- تغییرات گرمایی پست موجود

<table>
<thead>
<tr>
<th>شرایط داخل</th>
<th>دماهای حاصل</th>
<th>شرایط خارجی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بالا</td>
<td>45</td>
<td>بالا</td>
</tr>
<tr>
<td>نیمه</td>
<td>35</td>
<td>نیمه</td>
</tr>
<tr>
<td>پایین</td>
<td>25</td>
<td>پایین</td>
</tr>
</tbody>
</table>

ناتیج جدول 2 نشان می‌دهد مقادیر محسوس شده برای دما در محل فرآوری دمسازه سده با دقت‌های اندازه‌گیری نشان داده شده است از نتایج حاصل از تحلیل نسبت‌ها به طبقه‌بندی‌های انتقال محسوس می‌تواند. در طرح‌های اندازه‌گیری از این نتایج بهره‌مندی شود و مقدار دما در دسترس خواهد بود. این نتایج نیز به دلیل اینکه انتقال سوخت و دما در درون نشان داده شد.

سپاسگزاری

از مدیریت محترم شرکت نتوبه‌پذیرای ایران ترانسلوژن که این تحقیق به مهارت و چشمان‌بهران، دانشمندان و مدیران محترم شرکت ازایماغه‌ای صنایع برق ایران، که معاون در اختر تابعی تا دانست، تشکر و قدردانی می‌گردد.

