کاونتاپسیون‌های جزئی و جزئی-گسترده در مدل‌های محوری بر روی مان مزری

محمود پسندده فرد
دانشگاه فردوسی مشهد
مهدی نوروزی
دانشگاه فردوسی مشهد
چکیده
موضوع اصلی این مقاله شیب‌سازی جریان کاونتاپسیون جزئی و گسترده حول هندسه‌های متقاق محوری با استفاده از روش المان مرزی بر یکه
پتانسیل و به‌کارگیری مدل «جت پارشکنشی» برای مشخص‌کردن اندازه‌گیری این واقعه است. مدل جت پارشکنشی از جمله مدل‌هایی است که تلقی
نسبتاً مناسبی با فیزیک جریان‌های کاونتاپسیون دارد. به منظور شیب‌سازی جریان کاونتاپسیون، سطح جسم و جریان‌های توسط همان‌های گردبین زده
می‌شود. سپس با استفاده از نیروهای توری گرین، حل‌یافتن رسیدن به جریان محوری به‌کارگیری می‌شود. طول جریان و جت بازگشتی، مقادیر
تایب و عوامل ورودی سیال است و مناسب‌سازی جریان و جریان‌های کاونتاپسیون از جمله تایب‌های شبیه‌سازی می‌باشد. در
این تحلیل، نوری زیر ضرب فشار در کاونتاپسیون جزئی و ضرب پس در کاونتاپسیون گسترده شهرت از پیش‌بینی می‌شود. مقایسه نتایج جابج
اعیابی و عواملی دیگر، بیانگر این است که استفاده از مدل جت بازگشتی، پرتو نامتعارف ضرب فشار در انتهای جریان - حالت از شیب‌سازی کاونتاپسیون
بدون استفاده از مدل جت بازگشتی - را اصلاح می‌نماید. همچنین استفاده از مدل جت بازگشتی در مدل کاونتاپسیون قرار می‌دهد، منجر به
پیش‌بینی مناسب‌سازی محوری و نیز ضرب پس می‌شود از اهمیت‌های بسیاری در مدل کاونتاپسیون برای سرعت‌های این روش، سرعت‌های
متقارن محوری

کلمات کلیدی: کاونتاپسیون گسترده، کاونتاپسیون جزئی، المان مرزی، جت بازگشتی، متقاق محوری

Simulation of Cavitation Flows Around Axisymmetric Bodies by the Boundary Element Method Using Re-Entrant Jet Model at the Closure of the Cavity

M. Pasandidehfard
Associate Professor, Mechanical Engineering Department, Ferdowsi University of Mashhad

M. Nouroozi
Ph.D. Student, Mechanical Engineering Department, Ferdowsi University of Mashhad

Abstract
The main subject of this article is the simulation of the cavitation including partial and super cavitation over the axisymmetric bodies using a boundary element method (BEM) based on potential by re-entrant jet model in closure zone of cavity. Re-entrant jet model is one of the closure models of cavity which is in agreement with physics of unsteady cavitating flows. To simulate the cavitation region, cavity and body surfaces are modeled with plate panels. Then, by applying the integral expression of Green theory, cavitation can be modeled by distributing the source rings on cavity surfaces and dipole rings on cavity/body surfaces. The length of the cavity and re-entrant jet are assumed to be fixed as initial predictions. The cavitation number and shape of cavity are the main results of this simulation. Furthermore, the pressure coefficient in partial cavitation and drag coefficient in super cavitation are predicted. The comparison between these results with experimental and analytical ones show that simulation of partial cavitation using BEM with re-entrant jet model modified the overshoot -that exists in results of BEM simulation without using re-entrant jet model- at the end of the cavity pressure coefficient. The implemented BEM method with re-entrant jet in super cavitation led to very good results in prediction of cavity shape and drag coefficient. The main advantage of this method is shortening the time of the desirable convergence.

Keywords: Super Cavitation, Partial Cavitation, Boundary Element, Re-Entrant Jet, Axisymmetric
مقدمه

طل سال اخیر، "کالوئینسوین" از جمله بیده‌های فیزیکی بوده که توجه پزشکان را به یک موضع داشته است. در سال‌های گذشته، افراد بیماری مبتلا به مقداری سرما و یا کامِتر از فشار خازن ابتیاگام مانند یک بیماری بین‌المللی با مواردی از مواردی بهره‌مند هستند که این افراد تا به گاه به سلول‌های زندگی خاصی در جلوگیری از خستگی و افزایش مصرف سلول‌های زندگی Shares of تاکنون مدل‌های جهت برآوری از حفره پیشنهاد شده است که در مطالعات بیش از مدل‌های جهت برآوری از حفره پیشنهاد شده است. در مدل‌های جهت برآوری از حفره پیشنهاد شده است، مدل‌های جهت برآوری از حفره پیشنهاد شده است. در مدل‌های جهت برآوری از حفره پیشنهاد شده است، مدل‌های جهت برآوری از حفره پیشنهاد شده است. در مدل‌های جهت برآوری از حفره پیشنهاد شده است، مدل‌های جهت برآوری از حفره پیشنهاد شده است.
حفره بر روی جسم بسته می‌شود و در مدل پنجم ساده کاواتسانوس، انتهای حفره بر روی خط محور قرار کاواتسانوس بسته می‌شود. هنگامی که از مدل بسته ساده بزرگ‌سازی انتهایی حفره انتخاب شود، این منطقه، تغییرات حفره، در این مدل قطعه سکویی با وجود این آید که تغییرات محیطی ندارد. لذا ضرب فشار بهبود آن در این مدل در انتهای حفره، دارای پری‌مانعی است که به کار بررسی مدل جفت بسته‌ای (محفظ حاضر)، تغییرات محیطی با طول و ارتقای مشخص در شکل حفره‌های دیگری که در آن از مدل بسته ساده در انتهای حفره استفاده گردیده، شکل اولیه مدل جفت بکار رفته‌ای حاصل شد.

با توجه به اینکه پایه اصلی روش عالی مزیت، جریان پتانسیل‌ساز می‌باشد، در صورتی که‌شان از این روش برای تحلیل جریان کاواتسانوس استفاده نمود که نتایج شاهد جریان کاواتسانوس بررسی افتاده‌است. آزمایش‌های تری‌بانکس و همکاران نشان می‌دهد که جریان در اطراف حفره با تقریب شکل بکار گرفته است [11]. این مدل توان از طریق یادگیری برای شبیه‌سازی کاواتسانوس اجسام استفاده نمود. اگرچه جریان دیسک مدل کاواتسانوس، به‌طور عادی‌کننده مقدار متوسط حفره، در طول زمان و نوسان‌برنده اجرای جریان در طول زمان و نوسان‌برنده مقدار محیطی بسته‌ای انجام داده می‌شود.

روش‌المان مزیت حاضر، برای سرعت دیگری می‌باشد. نتیجه‌گیری ساده را برای حالات محدود کرده یک مدل کامپیوتری را تهیه کرده‌است که چهار جریان غیرخطی تراکم‌هایی را با کریستال که توزیع جسم‌های گردان روی سطوح مقد‌ان شیب‌های محدود، بر سطوح ای نظیر است، مقدار محیطی جسم‌های گردان روی محیط انتخابی برای حفره و جفت بکار رفته‌ای یک مدل کامپیوتری انجام گرفته است. طول این‌ها حفره و جفت بکار رفته‌ای نسبت به قطع استوانه‌ای بی‌حد‌گردد است. در مدل پنجم ساده کاواتسانوس جزئی، انتهای
شکل ۲- مختصات استوناهای برای بسته اوردن حلقه چشمی

با اعمال روابط (۵) و (۶) جمله‌های مختصات استوناهای استفاده شده در روابط (۵) و (۶) معرفی شده است.

اشکال بزرگی بر اثر انرژی غریزه مخاط، مختصات استوناهای است. بیان انرژی تنوره‌ای در این دستگاه مختصات بهصورت زیر است:

\[2\pi\rho(r,\phi) = \int_S \frac{\partial G}{\partial n}(x, r, \xi, \phi) - \frac{\partial G(x, r, \xi, \phi)}{\partial n} \rho d\phi d\sigma \] (۱)

که در آن \(n \) راداری عمود بر سطح \(S \) نیوتن کمان طی شده روی سطح \(S \) و \(r \) و \(\xi \) مختصات دستگاه مختصات مخاطی و \(G \) و \(\partial G/\partial n \) بهترین تابع گریزه و مشتق نرمال آن است که بهترین معرفی یک حلقه چشمی و یک حلقه دوگان می‌باشد.

تا بای تابع پتاسیلی است در یک نقاط، تابع پتاسیلی است که اثره اجرا این نیودهی بزرگ اثر پتاسیل جریان آزاد (سرعت) یک‌پلات بر روی هر ردیف را در خود دارد [۱۲] با توجه به متقابل مخاطی بودن هدف‌های مورد بررسی، عناصر پتاسیلی توزیع شده روی سطح جسم و حفره بایسته به صورت حلقه باشد. تا برای استفاده در دستگاه مختصات استوناهای مناسب باشد.

شکل ۳- روابط مزی

الف) شرط مزی سینماتیکی بر روی سطح جسم و حفره بر اساس شرط نیوتنی ناپایدار سطح می‌باشد که جریان هیچ مولفه عمومی بر سطح جسم ندارد. هم‌چنین فرض می‌شود که جریان هیچ مولفه عمومی بر سطح حفره نیز نداشته باشد. این بدان معناست که جهت جریان بر روی سطح جسم و حفره، صفر می‌باشد.

\[
\begin{align*}
\frac{\partial \phi}{\partial n} &= 0 \quad \text{on} \quad S_B \cup S_C \quad (\text{دارمی}) \quad (5) \\
\frac{\partial \varphi}{\partial n} &= -x_n \quad \text{on} \quad S_B \cup S_C
\end{align*}
\]

که فرم بیانی است از این رابع زیر است:

\[
\int_{x_n} \frac{\partial G(x, r, \xi, \phi)}{\partial n} \rho d\phi = \rho \int_{x_n} \frac{\partial G(x, r, \xi, \phi)}{\partial n} d\phi
\]

در روابط (۵) و (۶) از توزیع پتاسیلی استفاده شده است که برابر آن با توزیع پتاسیل کلی \(\phi \) به صورت زیر است:

\[\phi = \bar{U} + \bar{X} + \phi \]

که در آن \(U \) سرعت جریان آزاد گرندش را از روی سطح هدف‌های مورد استفاده صورت دارد. ذکر آید.
حل زمانی همگرا می‌شود که شرط مزی سینماتیکی روی حفره ارضا شده است.

ب) شرط مزی دینامیکی روی سطح حفره: جوین حریان حول حفره تا حد زمانی غیربختی است. می‌توان با استفاده از معادله برنولی سرعت نسبی برای جریان روی سطح حفره نسبتاً ارتحال که این اتفاق دارد. این معادله را می‌توان به صورت زیر تعریف نمود:

$$\sigma = \frac{P_0 - P_c}{\frac{1}{2} \rho U^2_c}$$

(8)

در رابطه (8) P_0 برتری سرعت و فشار جریان P_c از و U_c مولفه ماسب سرعت روی سطح حفره به تراز به دست می‌آید:

$$\frac{\partial \phi}{\partial n} = \sqrt{1 + \sigma} \quad \text{on} \quad S_c$$

(9)

به فرم پتانسیل اختلالی به صورت زیر توسط می‌شود:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)

با استفاده از رابطه (10) (حواشی دارد:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)

به فرم پتانسیل اختلالی به صورت زیر توسط می‌شود:

$$\frac{\partial \phi}{\partial n} = \sqrt{1 + \sigma} \quad \text{on} \quad S_c$$

(9)

با استفاده از رابطه (10) (حواشی به می‌شود:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)

به فرم پتانسیل اختلالی به صورت زیر توسط می‌شود:

$$\frac{\partial \phi}{\partial n} = \sqrt{1 + \sigma} \quad \text{on} \quad S_c$$

(9)

با استفاده از رابطه (10) (حواشی به می‌شود:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)

به فرم پتانسیل اختلالی به صورت زیر توسط می‌شود:

$$\frac{\partial \phi}{\partial n} = \sqrt{1 + \sigma} \quad \text{on} \quad S_c$$

(9)

با استفاده از رابطه (10) (حواشی به می‌شود:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)

به فرم پتانسیل اختلالی به صورت زیر توسط می‌شود:

$$\frac{\partial \phi}{\partial n} = \sqrt{1 + \sigma} \quad \text{on} \quad S_c$$

(9)

با استفاده از رابطه (10) (حواشی به می‌شود:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)

به فرم پتانسیل اختلالی به صورت زیر توسط می‌شود:

$$\frac{\partial \phi}{\partial n} = \sqrt{1 + \sigma} \quad \text{on} \quad S_c$$

(9)

با استفاده از رابطه (10) (حواشی به می‌شود:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)

به فرم پتانسیل اختلالی به صورت زیر توسط می‌شود:

$$\frac{\partial \phi}{\partial n} = \sqrt{1 + \sigma} \quad \text{on} \quad S_c$$

(9)

با استفاده از رابطه (10) (حواشی به می‌شود:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)

به فرم پتانسیل اختلالی به صورت زیر توسط می‌شود:

$$\frac{\partial \phi}{\partial n} = \sqrt{1 + \sigma} \quad \text{on} \quad S_c$$

(9)

با استفاده از رابطه (10) (حواشی به می‌شود:

$$\varphi = \varphi_0 + \sqrt{1 + \sigma} (x - s_0) - (x - \bar{x}) \quad \text{on} \quad S_c$$

(11)
برای کامل شدن تعداد معادلات در دستگاه معادلات خیلی
از این مفهوم استفاده می‌کنیم که مجموع قدرت خالص
چشمه‌های توزیع شده روی سطح حفره با شاری عبوری از مقطع
عمودی جفت یکانشی دری در است. [5] می‌توان این مفهوم را به
صورت زیر بیان نمود:

\[\int_{S_1} \frac{d\varphi}{dn} dS = \sqrt{1 + \sigma} \int_{S_1} dS \]

به منظور استفاده از روش‌های حل عددی معادلات
انگرایی، می‌باشیم این معادلات را با گسسته‌سازی، محور معادلات
گره‌های از معادلات جری درادوری، با حل این دستگاه معادلات
۳ قدرت چیزها و دوگانه‌ها به می‌آید. برای این منظور، ابتدا
با توجه به حفره و جفت یکانشی، می‌توانیم داده
اولیه تعیین شود. سپس سطح جسم، حفره و جفت یکانشی به
المان‌ها مستقیم کنیم. تریب درد شد.

با نوشتن معادله (۷) برای المان‌های سطح جسم و معادله
(۸) برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه ن_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره)، قدرت دوگانه ن_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

با نوشتن معادله (۸) برای المان‌های سطح حفره، تعادل
N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]

برای المان‌های سطح حفره، تعادل N = N_1 + N_2 + N_3
برای المان‌های سطح حفره، قدرت دوگانه N_1 قدرت چیز، روز
سطح جسم حفره و یک عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
عدد کانونیون (سرعت روی سطح حفره) "\[
\sqrt{1 + \sigma} \]
دستگاه معادلات گرین بر روی سطح حفره، مانند‌های مذکور نیز حضور می‌شوند. مقطع عمودی جفت بازگشتی که از اختیار پتول پیش روی جفت بازگشتی به درون حفره شروع و به سطح (در کاربنیتوسیون جزیری) و محور رقیق کاربنیتوسیون (در کاربنیتوسیون گسترده) ختم می‌شود، نیز می‌باشد. المان‌هایی می‌گردد و در معادلات گرین مورد استفاده قرار گرفت. با چنین نسبت جریان جفت بازگشتی به حضور عمودی جفت بازگشتی، به سطح‌هایی صرفاً می‌باشد. ما به شکل مقطع شریعتی معادلات پرویز دماد با استفاده از یک تعریف شرط مرزی و با استفاده از T، دو سطح حفره همگرایی می‌گردد. برای سرعت پرتو عمودی جفت بازگشتی و قسمت دوم رابطه ضریب شیب تابع تغییر ضریب شیب در

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

که رابطه‌ای بهم خط حسر را کاربنیتوسیون (\(g \))، گرادیان ضریب شوارز (\(d \)) در انتهای حفره، به شیب‌های ضخامت جفت بازگشتی، از رابطه تحلیل زیر که توسط کاتر [13] آرائه گردیده استفاده می‌شود.

\[\frac{\partial}{\partial x} \left(\frac{1}{2} \lambda^{2} \right) = \frac{dC}{d(x/l)} \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه تغییر ضریب شیب تابع تغییر ضریب شیب در

\[\frac{\partial}{\partial x} \left(\frac{1}{2} \lambda^{2} \right) = \frac{dC}{d(x/l)} \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]

در انتهای حفره، به دسته‌ای ضخامت جفت بازگشتی و قسمت دوم رابطه

\[\lambda = \frac{1}{2} \left[1 - \frac{1}{\sigma + 1} \right] + \frac{dC}{d(x/l)} d \]
نقاط نسبتی به آن تغییر می‌کند. این تصحیح تا جابجایی صورت می‌گیرد که شرط مزی سیستماتیکی مرز حفره افزوده شود. بر این اساس، در ترکیه‌ای مختلف جهت، شکل اولیه حفره تصحیح خواهد شد و در نهایت حل مگرا شده و شکل نهایی جریان کوانتاسیون (کشتدن و جزئی) حاصل خواهد شد.

در این بیانه، استقلال میان‌گیری از تعداد المان‌های توزیع شده روی سطح جسم، حفره و جت بازگشتی نیز برسی شده است. مستحکم‌گیری گردهای کوانتاسیون، عده کوانتاسیون به سمت مقدار خاصی می‌کند. در مجموع نتایج حل در هندسه‌های مختلف، از تعداد المان‌های بیش از 145 روی مرزهای مساله مستقل شده است (تعداد المان‌های پیش از 10 روی سطح جسم، تعداد المان‌های بیش از 145 روی حفره)

روی مرزهای مختلف از تعداد المان‌های بیش از 145 روی سطح جسم، تعداد المان‌های بیش از 10 برای مقطع عمودی انتهای جهت و برای ترکیب‌های مختلف از تعداد المان‌های بیش از این مقادیر مستقل حل از تعداد المان‌های گرده‌ای است. عدم تابی، با شیب‌های ریز و استقلال حر در تعداد المان‌های بیش از 145 روی سطح جسم، تعداد المان‌های بیش از 10 برای حفره و تعداد المان‌های بیش از 10 برای جت بازگشتی با‌هی مقدار گرده‌ای است.

نتیجه گیری

- کوانتاسیون با توجه به تعداد المان‌های بیش از 145 روی سطح جسم، تعداد المان‌های بیش از 10 برای حفره و تعداد المان‌های بیش از 10 برای جت بازگشتی توانایی عملکرد این تعداد المان‌های بیش از 145 روی سطح جسم، تعداد المان‌های بیش از 10 برای حفره و تعداد المان‌های بیش از 10 برای جت بازگشتی به‌همین مقدار می‌گردد.

جدول 1- مقایسه طول حفره جزئی در هندسه‌های مختلف در عدد کوانتاسیون

<table>
<thead>
<tr>
<th>عدد کوانتاسیون</th>
<th>سرعت</th>
<th>نسبت</th>
<th>هندسه</th>
<th>$L_{cavity}/L_{cylinder}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0.94</td>
<td>1.23</td>
<td>L_{cavity}</td>
<td>0.315</td>
</tr>
</tbody>
</table>

نتایج جدول 1 نشان می‌دهد که در عدد کوانتاسیون مشخص، طول حفره در استوانه سرعت بیشترین مقدار و در استوانه سرکروی کمترین مقدار را دارد. این پدیده در کوانتاسیون از آن سیاست اینستیتو تبدیل حرارت دور می‌باشد. انتخاب سیستم در گونبندی روی آن سیستم قطعی و ترکیبی حرارت بزرگتر خواهد بود، بیشتر بودن طول حفره در استوانه سرعت بیشتر همراه با کمتر بودن طول حفره در استوانه سرکروی نیز بر اساس این مفهوم فیزیکی توجیه خواهد شد.
به نهایتی‌هایی لبه حمله، عددها کوتیناسیون به‌سرعت افزایش و جمله‌هایی و افزایش شد. جمله است که روش دانه‌ای با جت پایشگری، مطالعه این علل با حدودی به‌دست این شد و نتایج در نتایج که جریان کوچک‌تر در لبه حمله را پیش‌بینی می‌کند.

شکل 7- تغییرات عدد کوتیناسیون نسبت به طول جت

پایشگری بی‌بعد شده نسبت به طول حفره

شکل 8- پیش‌بینی جدا شدن قسمت عقب حفره در هنگام پیشرفت بیش از حد جت به درون حفره

شکل 9- بررسی اثر تغییر طول جسم بر عدد کوتیناسیون در یک طول حفره مشخص

شکل 10- تغییرات پایشگری ضخامت حفره نسبت به طول حفره

در شکل (9) شکل حفره در طول حفره‌های مختلف بر روی یک استونه سرخخت به طول 8 شانه داده شده است. این نتایج از لحاظ عملی نمودار کاربردی و مفیدی است که در طراحی
در شکل ۱۲، ضریب پساحای حالت از روی ثاندرات مربوط به
مدل جی تی بارگشتی (مقاله حاضر) [۱۷] مقایسه گردیده است. مقادیر
وضای پسای بایش پسای بایشی و استریت سطح حاضر در عدد
کاواتپاسیون‌های مختلف، حدود ۵ مرست از داده‌های
تجربه مرجع [۱۷] و نتایج عددی مرجع [۱۷] است. ویژه
در مرجع [۱۷] یک به این مسأله اشاره کرد که سختی حذف
بارگشتی در پیش‌بینی ضرایب پسای با دانست خطا همراه است.

در شکل ۱۲ تغییرات پیشنهادی قطر حفره بر حسب عدد
کاواتپاسیون که از روش رش مزی حاضر بدست‌آمده است،
با نتایج روش رش مزی مرجع [۱۷]، نتایج تجربی مرجع
و نتایج تحلیل مرجع [۱۷] مقایسه شده است. شکل
۱۳ نشان‌گر این است که که روی رش رش مزی
حاظر به خوبی می‌توان تغییرات نظرات کنست به حسب
عدد کاواتپاسیون را نشان داده اما در اعداد کاواتپاسیون کوچک،
نتایج این تحلیل مقدار کمی با نتایج تجربی اختلاف دارد.

 Numerous\[17\]\ Experimental\[2\] BEM\(\text{present}\)

شکل ۱۲- تغییر ضریب پسای بر حسب عدد کاواتپاسیون برای
دیسک و مقایسه با داده‌های تجربی مرجع [۱۷] و نتایج
عددی مرجع [۱۷]

شکل حفره گسترده بر حسب عدد کاواتپاسیون محسوب،
معمولاً بهصورت پیش‌گوی و مستقل از هندسه کاواتپاسیون
باشند [۱۷]؛ می‌توان راه‌حل‌های دیسک برای نسبت طول حفره
گسترده یک هندسه‌های متقابل محوری (Lcavity) به قطر
کاواتپاسیون (Dcavity) ارائه نموده است [۱۷] و در شکل
۱۲ تغییرات نقطه بر حسب عدد کاواتپاسیون برای جریان
کاواتپاسیون گسترده پیشنهاد داده شده از روی رش مزی حاضر با
نتایج روش مزی بدون جهت بارگشتی مرجع [۱۷] و نتایج عددی تحلیل مرجع
داده‌های تجربی مرجع [۱۷] مقایسه گردیده است. این ارائه، امکان محدود
حاضر با داده‌های تجربی در کلیه اعداد کاواتپاسیون مورد بررسی
کاوانطیون کوکچ (طول‌های جریان برگ) نمی‌شود زیرا برای تحلیل جریان‌های باروت‌مصرف کاوانطیون‌ها و استفاده از کاوانطیون‌هایی که عامل‌های خیلی بالا می‌باشد می‌تواند با وجود نتایج تحلیلی برای طول‌های جریان برگ کاوانطیون نیست. بنابراین روش باروت‌مصرف در این مطالعه نیاز به گزارش‌های اصلاح‌پذیر ندارد.

4. Furness R. A., Hutton S. P., "Experimental and Theoretical Studies of Two-Dimensional Fixed-

