بررسی تجربی و عددی تأثیر سوراخ بر مشخصات فروپاشی مخروط‌های ناقص ته بسته تحت بارگذاری محوری شبه‌استاتیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه بوعلی‌سینا، همدان، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه بوعلی‌سینا، همدان، ایران

3 مربی، گروه مهندسی صنایع، دانشگاه نهاوند، نهاوند، ایران

چکیده

در این پژوهش، ویژگی­های جذب انرژی مخروط­های ته بسته­ی فولادی که در حالات گوناگون سوراخ­دار شده­اند، تحت بارگذاری محوری شبه­استاتیکی به دو صورت تجربی و عددی بررسی شده است. در بخش تجربی، پس از تهیه­ی مخروط­های آماده، آلیاژ فولاد سازنده تعیین شد. به منظور تعیین خواص مکانیکی، نمونه­های دمبلی شکل به وسیله­ی برش وایرکات از مخروط جدا شده و سپس منحنی تنش کرنش برای آن­ها استخراج شد. شبیه­سازی ساختارهای مخروطی به کمک نرم­افزار المان محدود LS-Dyna و مقایسه­ی آن­ها با داده­های حاصل از آزمایش­های تجربی انجام شد و تطابق خوبی بین نتایج تجربی و عددی وجود داشت. در این پژوهش، 48 حالت گوناگون بررسی و مشخصات فروپاشی آن­ها استخراج و مقایسه شدند. در این 48 حالت، سه زاویه برای یال مخروط، چهار ضخامت گوناگون و چهار آرایش متفاوت از نظر تعداد سوراخ­ گنجانده شده است و از این طریق رفتار مکانیکی جاذب­های مخروطی ته بسته­ی فولادی سوراخ­دار، در حالات گوناگون، مطالعه شده است. بررسی­ها نشان می­دهد که افزایش تعداد سوراخ در بدنه­ی جاذب­ها، منجر به کاهش نیروی بیشینه و افزایش کارایی نیروی له­شدگی می­شود. با توجه به نتایج به دست آمده، جاذب­های مخروطی سوراخ­دار جایگزین مناسبی برای نمونه­های مشابه بدون سوراخ هستند.

کلیدواژه‌ها

موضوعات


[1]  Engineers S. O. A., Vehicle Crashworthiness and Occupant Protection in Frontal Collisions: Society of Automotive Engineers, Michigan, 1990.
[2]  Zhang X., Zhang H., Wen Z., Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations, International Journal of Impact Engineering, Vol. 66, pp. 48-59, 2014.
[3]  A. Alavi Nia A., Haddad Hamedani J., Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries, Thin-Walled Structures, Vol. 48, No. 12, pp. 946-954, 2010.
[4]  Yin H., Wen G., Liu Z., Qing Q., Crashworthiness optimization design for foam-filled multi-cell thin-walled structures, Thin-Walled Structures, Vol. 75, pp. 8-17, 2014.
[5]  Mamalis A. G., Manolakos D. E., Saigal S., Viegelahn G., Johnson W., Extensible plastic collapse of thin-wall frusta as energy absorbers, International Journal of Mechanical Sciences, Vol. 28, No. 4, pp. 219-229, 1986.
[6]  Mamalis A. G., Manolakos D. E., Viegelahn G. L., The axial crushing of thin PVC tubes and frusta of square cross-section, International Journal of Impact Engineering, Vol. 8, No. 3, pp. 241-264, 1989.
[7]  Alghamdi A. A. A., Reinversion of aluminium frustra, Thin-Walled Structures, Vol. 40, No. 12, pp. 1037-1049, 2002.
[8]  Alghamdi A. A. A., Aljawi A. A. N., Abu-Mansour T. M. N., Modes of axial collapse of unconstrained capped frusta, International Journal of Mechanical Sciences, Vol. 44, No. 6, pp. 1145-1161, 2002.
[9]  Aljawi A. A. N., Alghamdi A. A. A., Abu-Mansour T. M. N., Akyurt M., Inward inversion of capped-end frusta as impact energy absorbers, Thin-Walled Structures, Vol. 43, No. 4, pp. 647-664, 2005.
[10]         Niknejad A., Tavassolimanesh A., Axial compression of the empty capped-end frusta during the inversion progress, Materials & Design, Vol. 49, pp. 65-75 , 2013.
[11]         El-Sobky H., Singace A. A., Petsios M., Mode of collapse and energy absorption characteristics of constrained frusta under axial impact loading, International Journal of Mechanical Sciences, Vol. 43, No. 3, pp. 743-757, 2001.
[12]         Akisanya A. R., Fleck N. A., Plastic collapse of thin-walled frusta and egg-box material under shear and normal loading, International Journal of Mechanical Sciences, Vol. 48, No. 7, pp. 799-808, 2006.
[13]         Ghamarian A., Zarei H. R., Abadi M. T., Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes, Thin-Walled Structures, Vol. 49, No. 10, pp. 1312-1319, 2011.
[14]         Kathiresan M., Manisekar K., Manikandan V., Performance analysis of fibre metal laminated thin conical frusta under axial compression, Composite Structures, Vol. 94, No. 12, pp. 3510-3519, 2012.
[15]         Kathiresan M., Manisekar K., Manikandan V., Crashworthiness analysis of glass fibre/epoxy laminated thin walled composite conical frusta under axial compression, Composite Structures, Vol. 108, pp. 584-599, 2014.
[16]         Kathiresan M., Manisekar K., Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low velocity impact loading, Composite Structures, Vol. 136, pp. 86-100, 2016.
 [17] Zhang X., Zhang H., Relative merits of conical tubes with graded thickness subjected to oblique impact loads, International Journal of Mechanical Sciences, Vol. 98, pp. 111-125, 2015.
[18]         Li G., Xu F., Sun G., Li Q., A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading, International Journal of Impact Engineering, Vol. 77, pp. 68-83, 2015.
[19]         Hosseinipour S. J., Daneshi G. H., Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compression, Thin-Walled Structures, Vol. 41, No. 1, pp. 31-46, 2003.
[20] A. Niknejad, Mojtaba Firouzi, Hamidreza Saadatfard, Experimental investigations on the folding process of polyurethane foam-filled aluminum columns with circular discontinuities, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 40 No. 4, pp. 359-367, 2016.
 [21]Alavi Nia A., Badnava H., Fallah Nejad K., An experimental investigation on crack effect on the mechanical behavior and energy absorption of thin-walled tubes, Materials & Design, Vol. 32, No. 6, pp. 3594-3607, 2011.
 [22]Yuen S. C., Nurick G. N., The Energy-Absorbing Characteristics of Tubular Structures With Geometric and Material Modifications: An Overview, Applied Mechanics Reviews, Vol. 61, No. 2, pp. 1-15, 2008.
 [23] Niknejad A., Abedi M.M., Liaghat G.H., Zamani Nejad M.,  Foam-filled grooved tubes with circular cross-section under axial compression: a theoretical analysis, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 40, No. 3, pp. 155-167, 2016.
[24]         Alavi Nia A., Fallah Nejad K., Badnava H., Farhoudi H. R., Effects of buckling initiators on mechanical behavior of thin-walled square tubes subjected to oblique loading, Thin-Walled Structures, Vol. 59, pp. 87-96, 2012.
[25]         Stahlschlussel: Key to Steel: Verlag Stahlschlussel, Germany, 1986.
[26]         ASTM. International, ASTM E8/E8M - 09 Standard Test Methods for Tension Testing of Metallic Materials: ASTM, 2009.
[27]         Ghannadpour S. A. M., Najafi A., Mohammadi B., On the buckling behavior of cross-ply laminated composite plates due to circular/elliptical cutouts, Composite Structures, Vol. 75, pp. 3-6, 2006.
[28] Alexander J.M., An approximate analysis of the collapse of the thin cylindrical shells under axial loading, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 13, pp. 10-15, 1960.