شبیه سازی یک سیستم نوین تولید یکپارچه هیدروژن و توان با تلفیق چرخه ORC و سیستم ریفرمینگ بخارآب زیست گاز خورشیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

3 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

در این مقاله، یک سیستم ریفرمینگ بخارآب زیست گاز و چرخه رانکین آلی(ORC) جهت تولید همزمان هیدروژن و توان تلفیق شده است. برای بازیابی گرمای محصول تولیدی راکتور یک چرخه ORC با سیستم ریفرمینگ ترکیب شده است. مدلسازی جامع ترمودینامیکی بر روی سیستم پیشنهادی صورت گرفته است. مطالعه پارامتریک نیز برای بررسی تأثیر پارامترهای مختلف سیستم بر روی عملکرد انرژتیکی سیستم انجام گرفته است. نتایج نشان دادند که با افزایش دما در یک نسبت مولی ثابت دی اکسید کربن به متان، میزان تولید هیدروژن ، توان تولیدی خالص، بازده انرژی کل سیستم افزایش می­یابد. علاوه براین، افزایش نسبت مولی دی اکسید کربن به متان در مخلوط زیست گاز باعث کاهش میزان تولید هیدروژن به ازای هر مول متان و افزایش توان تولیدی خالص شده و در نتیجه بازده انرژی سیستم ترکیبی کاهش می­یابد. بیشترین توان تولیدی خالص و  بازده انرژی سیستم ترکیبی ارائه شده در شرایطی که میزان تولید هیدروژن بیشینه است، به ترتیب برابر kW 24/19، %44 حاصل شده که در مقایسه با سیستم تولید هیدروژن از طریق ریفرمینگ به میزان %5 افزایش یافته است.

کلیدواژه‌ها

موضوعات


[1]   Zhu J., Hu K., Lu X., Huang X., Liu K., Wu X., A review of geothermal energy resources, development, and applications in China: Current status and prospects, Energy, Vol. 93, pp. 466-483, 2015.
[2]   Braga L.B., Silveira J.L., Evaristo S.M., Tuna C., Machin E.B., Pedroso D.T. "Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis", Ren Sust Energy Rev, Vol. 28, pp. 6166-6173, 2013.
[3]   Edelmann W., "Biogas production and usage Energy from biomass: basic principles, technologies and processes", Springer, Germany, 2001.
[4]   Alves H.J., Bley C.J., Niklevicz  R.R., Frigo E.P., Frigo M.S., CoimbraArau C.H., "Overview of hydrogen production technologies from biogas and the applications in fuel cells", Int. J. Hydrogen Energy, Vol. 38, pp. 521-525, 2013.
[5]   Kolbitsch P., Pfeifer C., Hofbauer H., "Catalytic steam reforming of model biogas", Fuel,Vol. 87, pp. 701-706, 2008.
[6]   Balat M., "Potential importance of hydrogen as a future solution to environmental and transportation problems", Int. J. Hydrogen Energy, Vol. 33, pp. 4013–4029, 2008.
[7]   Winter C. J., "Hydrogen energy — Abundant, efficient, clean: A debate over the energy-system-of-change", Int. J. Hydrogen Energy, Vol. 34, pp. 1–52, 2009.
[8]   Dincer I., "Hydrogen and Fuel Cell Systems", Advanced Power Generation Systems, pp. 143-198, 2014.
[9]   Kang J.S., Kim D.H, Lee S.D., Hong S.I., Moon D.J., "Nickel-based tri-reforming catalyst for the production of synthesis gas", Appl. Catal., Vol. 332, pp.153–158, 2007.
[10]              Muradov NZ, Veziroglu TN. From hydrocarbon to hydrogen - carbon to hydrogen economy. Int J Hydrogen Energy 2005; 30:225-62.
[11]              Udengaard N.R., "Hydrogen production by steam reforming of hydrocarbons", Am Chem Soc Div Fuel Chem, Vol. 49, pp. 1-6, 2004.
[12]               Rathod V. P., Shete J., and Bhal P.V., Experimental  investigation on biogas reforming to hydrogen rich syngas production using solar energy, Int. J. Hydrogen Energy, Vol. 41, pp. 132-138, 2016.
[13]  Quoilin, S., Van Den Broek, M., Declaye, S., Dewallef, P., Lemort, V., Techno economic survey of Organic Rankine Cycle (ORC) systems. Renew. Sustain. Energy Rev, Vol. 22, pp. 168-186, 2013.
[14]  Tolga M., Kizilkan O., Yılmaz F., Energy and exergy analyses of integrated hydrogen production system using high temperature steam electrolysis, Vol. 41, pp. 8038-8041, 2016.
[15]  Ratlamwala T.A.H., Dincer I., Aydin M., Energy and exergy analyses and optimization study of an integrated solar heliostat field system for hydrogen production, Vol. 37, pp. 18704-18712, 2012.
[16]  Abdullah A. A lZaharani, I. Dincer , Naterer G.F. ,Performance evaluation of a geothermal based integrated system for power, hydrogen and heat generation, Vol. 38, pp. 14505-14511, 2013.
[17]  Ozcan H., Dincer I., Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification, Vol. 40, pp. 7798-7807, 2015.
[18]  Herdem MS., Farhad S., Dincer I., Hamdullahpur F. ,Thermodynamic modeling and assessment of a combined coal gasification and alkaline water electrolysis system for hydrogen production. Int J Hydrogen Energy, Vol. 39, pp. 3061-3071, 2014.
[19]  Ratlamwala, T.A.H., Dincer, I., Comparative energy and exergy analyses of two solar-based integrated hydrogen production systems. Int. J. Hydrogen Energy, Vol. 40, pp. 7568–7578, 2015.
[20]  Bicer, Y., Dincer, I., Development of a new solar and geothermal based combined system for hydrogen production. Sol. Energy, Vol. 127, pp. 269–284, 2016.
[21]  Yilmaz, F., Balta, M.T., Selbas, R., A review of solar based hydrogen production methods. Renew. Sustain. Energy Rev. Vol. 56, pp. 171–178, 2016.
[22]  Vatani A., Khazaeli A., Roshandel R., Panjeshahi MH. Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer. Energy Conversion Management, Vol. 67, pp. 197-207, 2013.
[23]  Yunus Y., Ozturk M., Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production, http://dx.doi.org/10.1016/j.ijhydene.2016.04.172.
[24]  Rabbani M., Dincer I., Energetic and exergetic assessments of glycerol steam reforming in a combined power plant for hydrogen production, Int. J. Hydrogen Energy, Vol. 40, pp. 1-8, 2015.
[25]  Cipiti F., Barbera O., Briguglio N., Giacoppo G., Italiano C.  , and Vita A., "Design of a biogas steam reforming reactor: A modeling and experimental approach", Int. J. Hydrogen Energy, Vol. 41, pp. 1-7, 2016.
[26]  Hajjaji N., Martinez S., Trably E., Steyer J.-P., and  Helias A., "Life cycle assessment of hydrogen production from biogas reforming", Int. J. Hydrogen Energy, Vol. 41, pp. 6064-6075, 2016.
[27]  Ahmed Sh., Lee Sh. H.D., and Ferrandon M. S., Catalytic steam reforming of biogas: Effects of feed composition and operating conditions, Int. J. Hydrogen Energy, Vol. 40, pp. 1-11, 2014.
[28]  Cohce M.K., Dincer I., and Rosen M.A., Energy and exergy analyses of a biomass-based hydrogen production system, Bioresource Technology, Vol. 102, pp. 8466-8474, 2011.
[29]  Mehr A.S., Mahmoudi S.M.S., Yari M., and Chitsaz A., Thermodynamic and exergoeconomic analysis of biogas fed solid oxide fuel cell power plants emphasizing on anode and cathode recycling: A comparative study, Energy Conversion and Management, Vol. 105, pp. 596-606, 2015.
[30]  Galvagno A., Chiodo V., Urbani F., and Freni F., Biogas as hydrogen source for fuel cell applications, Int. J. Hydrogen Energy,Vol. 38, pp.3913-3920, 2013.
[31]  Jakobsen J.G., Jorgensen T.L., Chorkendorff I., and Sehested J., Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst, Appl Catal AGen, Vol. 377, pp.158-166, 2010.
[32]  Guczi L., and Erdohelyi A., Catalysis for alternative energy generation, Springer, New York, 2012.
[33]  Rahimpour M.R., Dehnavi M.R., Allahgholipour F., Iranshahi D., and Jokar S.M, Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review, Appl Energy, Vol.99, pp.496-512, 2012.
[34]  Izquierdaro U., Barrio V.L., Lago N., Requies  J., Cambra J.F., Guemez M.B., and Arias P.L., Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and micro reactor reaction systems, Int. J. Hydrogen Energy, Vol. 37, pp.13829-13842,2012.
[35]  Gangadharan P., Kanchi K.C, and Lou H.H., Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane, Chem Eng Res Dev, Vol.90, pp. 1956-1968, 2012.
[36]  Hung, T.C., Waste heat recovery of organic Rankine cycle using dry fluids. Energy Conversion and Management. Vol. 42, pp. 539–553, 2001.
[37]  Sun S., Yan W., Sun P., and Chen J., Thermodynamic analysis of ethanol reforming for hydrogen production, Energy, Vol. 44, pp. 911-924, 2012.
[38]  Klein S., and Nellis G., Thermodynamics, Cambridge University press, New York, 2012.
[39]  Wang W., and CaoY, Hydrogen production via sorption enhanced steam reforming of butanol: Thermodynamic analysis, Int. J. Hydrogen Energy, Vol. 36, pp. 2887-2895, 2011.
[40]  Roy P. S., Raju A. S.K., and  Kim K., Influence of S/C ratio and temperature on steam reforming of model biogas over a metal-foam-coated Pd–Rh/(CeZrO2–Al2O3) catalyst, Fuel, Vol. 139, pp. 314-320, 2015.
[41]    Bejan A., Tsatsaronis G., Moran M., Thermal design and optimization, John Wiley & Ny, Inc., New York, 1996.
[42]  Szargut J., Morris D.R., and Steward F.R., Exergy analysis of thermal, chemical and metallurgical processes, Hemisphere, New York, 1988.
[43]  Basaran A., Ozgener L., Investigation of the effect of different refrigerants on performances of binary geothermal power plants, Energy Conversion and Management, Vol. 76, pp. 483-498, 2013.
[44]   Wegeng R., Diver R., and Humble P. Second law analysis of a solar methane reforming system, Energy Procedia, Vol. 49, pp. 1248-1258, 2014.
[45]  Safarian S., Aramoun F., Energy and exergy assessments of modified Organic Rankine Cycles (ORCs), Energy Reports, Vol. 1, pp. 1-7, 2015.
[46]  Simpson A. P., Lutz A. E., Exergy analysis of hydrogen production via steam methane reforming, Int. J. Hydrogen Energy, Vol. 32, pp. 4811-4820, 2007.