تاثیر فرآوری اصطکاکی اغتشاشی بر خواص مکانیکی، تریبولوژیکی و مقاومت به خوردگی فولاد کم کربن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مواد، باشگاه پژوهشگران جوان و نخبگان، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد شیراز، دانشکده مهندسی، شیراز، ایران

3 فارغ التحصیل کارشناسی ارشد، گروه مهندسی مکانیک، گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

4 فارغ التحصیل کارشناسی، گروه مهندسی مواد، گروه مهندسی مواد، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

در تحقیق حاضر به بررسی تاثیر فرآیند اصطکاکی اغتشاشی بر خواص تریبولوژیکی، مکانیکی و خوردگی فولاد کم کربن AISI 1010 پرداخته شده است. فرآیند در سرعت‌های چرخش متفاوتی از 800 تا 1600 دور بر دقیقه انجام شد و بهترین نتایج برای نمونه فرآوری شده با کمترین سرعت چرخش (800 دور بر دقیقه) بدست آمد. با اعمال فرآیند اصطکاکی اغتشاشی دانه‌‌بندی ساختار تحت مکانیزم تبلورمجدد دینامیک تا ابعاد 5/0 میکرومتر ریز شد (اندازه دانه اولیه 10 میکرومتر بوده است). همچنین استحکام کششی نمونه‌های فرآوری شده در شرایط بهینه فرآیند تا 50 مگاپاسکال افزایش داشت. به همین ترتیب سختی نمونه‌های فرآوری شده بیش از 5/2 برابر فلز پایه افزایش داشت. با بهبود ریزساختار و خواص مکانیکی نمونه‌ها در نتیجه فرآوری اصطکاکی- اغتشاشی، متعاقبا رفتار تریبولوژیکی بهبود پیدا کرده و نرخ سایش نمونه‌ها حدودا 28% کاهش یافته است. جهت بررسی خواص خوردگی نمونه ها آزمون خوردگی بر اساس استاندارد ASTM G5  انجام شد. مشاهده گردید که اعمال فرآوری اصطکاکی- اغتشاشی تغییری در خواص خوردگی فولاد کم کربن ایجاد نمی‌کند.

کلیدواژه‌ها


[1]           [1] Glaeser W. A., Materials for Tribology. New York: Elsevier, 1992.
[2]           [2] Kowser M. A. and Motalleb M. A., Effect of Quenching Medium on Hardness of Carburized Low Carbon Steel for Manufacturing of Spindle Used in Spinning Mill, Procedia Engineering, Vol. 105, pp. 814-820, 2015.
[3]           [3] Bartkowska A., Pertek A., Kulka M. and Klimek L., Laser surface modification of boronickelized medium carbon steel, Optics & Laser Technology, Vol. 74, pp. 145-157, 2015.
[4]           [4] Catteau S. D., Van Landeghem H. P., Teixeira J., Dulcy J., Dehmas M., Denis S., et al., Carbon and nitrogen effects on microstructure and kinetics associated with bainitic transformation in a low-alloyed steel, Journal of Alloys and Compounds, Vol. 658, pp. 832-838, 2016.
[5]           [5] Watanabe H., Arase S., Yamamoto T., Wells P., Onishi T., and G. R. Odette, Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons, Journal of Nuclear Materials, Vol. 471, pp. 243-250, 2016.
[6]           [6] Bataev I. A., Golkovskii M. G., Losinskaya A. A., Bataev A. A., A. Popelyukh I., Hassel T., et al., Non-vacuum electron-beam carburizing and surface hardening of mild steel, Applied Surface Science, Vol. 322, pp. 6-14, 2014.
[7]           [7] Bataev I. A., Golkovskii M. G., Bataev A. A., Losinskaya A. A., Dostovalov R. A., Popelyukh A. I., et al., Surface hardening of steels with carbon by non-vacuum electron-beam processing, Surface and Coatings Technology, Vol. 242, pp. 164-169, 2014.
[8]           [8] Bolelli G., M. Berger L., Börner T., Koivuluoto H., Lusvargh, L.,  Lyphout C., et al., Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: A comparative assessment, Surface and Coatings Technology, Vol. 265, pp. 125-144, 2015.
[9]           [9] Jankauskas V., Antonov M., Varnauskas V., Skirkus R. and Goljandin D., Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacings with low-carbon or stainless steel matrix, Wear, Vol. 328-329, pp. 378-390, 2015.
[10]         [10] Li M., Han B., Wang Y., Song L. and Guo L., Investigation on laser cladding high-hardness nano-ceramic coating assisted by ultrasonic vibration processing, Optik - International Journal for Light and Electron Optics, Vol. 127, pp. 4596-4600, 2016.
[11]         [11] Liu H., Xu Q., Wang C. and Zhang X., Corrosion and wear behavior of Ni60CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing, Journal of Alloys and Compounds, Vol. 621, pp. 357-363, 2015.
[12]         [12] Luo F., Cockburn A., Sparkes M., Lupoi R., Chen Z.-j., O'Neill W., et al., Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition, Defence Technology, Vol. 11, pp. 35-47, 2015.
[13]         [13] Owens A. G., Brühl S., Simison S., Forsich C. and Heim D., Comparison of Tribological Properties of Stainless Steel with Hard and Soft DLC Coatings, Procedia Materials Science, Vol. 9, pp. 246-253, 2015.
[14]         [14] Gibson B. T., Lammlein D. H., Prater T. J., Longhurst W. R., Cox C. D., Ballun M. C., et al., Friction stir welding: Process, automation, and control, Journal of Manufacturing Processes, Vol. 16, pp. 56-73, 2014.
[15]         [15] Lohwasser D. and Chen Z., Friction stir welding, From basics to applications. New York: CRC Press, 2010.
[16]         [16] Tinubu O. O., Das S., Dutt A., Mogonye J. E., Ageh V., Xu R., et al., Friction stir processing of A-286 stainless steel: Microstructural evolution during wear, Wear, Vol. 356-357, pp. 94-100, 2016.
[17]         [17] Yasavol N. and Ramalho A., Wear properties of friction stir processed AISI D2 tool steel, Tribology International, Vol. 91, pp.183-77,2015.
                [18] Xue P., Ma Z. Y., Komizo Y. and Fujii H., Achieving ultrafine-grained ferrite structure in friction stir processed weld metal, Materials Letters, Vol. 162, pp. 161-164, 2016.
                [19] Navazani M. and Dehghani K., Investigation of Microstructure and Hardness of Mg/TiC Surface Composite Fabricated by Friction Stir Processing (FSP), Procedia Materials Science,Vol. 11, pp. 509-514, 2015.
                [20] Ratna Sunil B., Pradeep Kumar Reddy G., Mounika A. S. N., Navya Sree P., Rama Pinneswari P., Ambica I., et al., Joining of AZ31 and AZ91 Mg alloys by friction stir welding, Journal of Magnesium and Alloys, Vol. 3, pp. 330-334, 2015.
                [21] Hussein S. A., Tahir A. S. M. and Hadzley A. B., Characteristics of aluminum-to-steel joint made by friction stir welding: A review, Materials Today Communications,Vol. 5, pp. 32-49, 2015.
                [22] Rezaei-Nejad S. S., Abdollah-zadeh A., Hajian M., Kargar F., and Seraj R., Formation of Nanostructure in AISI 316L Austenitic Stainless Steel by Friction Stir Processing, Procedia Materials Science, Vol. 11, pp. 397-402, 2015.
                [23] Hajian M., Abdollah-zadeh A., Rezaei-Nejad S. S., Assadi H., Hadavi S. M. M., Chung K., et al., Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing, Applied Surface Science, Vol. 308, pp. 184-192, 2014.
                [24] Hajian M., Abdollah-zadeh A., Rezaei-Nejad S. S., Assadi H., Hadavi S. M. M., Chung K., et al., Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel, Materials & Design, Vol. 67, pp. 82-94, 2015.
                [25] Mehranfar M. and Dehghani K., Producing nanostructured super-austenitic steels by friction stir processing, Materials Science and Engineering: A, Vol. 528, pp. 3404-3408, 2011.
                [26] Grewal H. S., Arora H. S., Singh H. and Agrawal A., Surface modification of hydroturbine steel using friction stir processing, Applied Surface Science, Vol. 268, pp. 547-555, 2013.
                [27] Dodds S., Jones A. H. and Cater S., Tribological enhancement of AISI 420 martensitic stainless steel through friction-stir processing, Wear, Vol. 302, pp. 863-877, 2013.
                [28] Ghasemi-kahrizsangi A., Kashani-Bozorg S. F. and Moshref-Javadi M., Effect of friction stir processing on the tribological performance of Steel/Al2O3 nanocomposites, Surface and Coatings Technology, Vol. 276, pp. 507-515, 2015.
                [29] Ghasemi-Kahrizsangi A.and Kashani-Bozorg S. F., Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing, Surface and Coatings Technology, Vol. 209, pp. 15-22, 2012.
                [30] Mishra R. S. and Ma Z. Y., Friction stir welding and processing, Materials Science and Engineering: R: Reports, Vol. 50, pp. 1-78, 2005.
                [31] Darvazi A. R. and Iranmanesh M., Thermal modeling of friction stir welding of stainless steel 304L, The International Journal of Advanced Manufacturing Technology, Vol. 75, pp. 1299-1307, 2014.
                [32] Suski C. A. and Oliveira C. A. S., Effect of Austenitization Temperature on the Precipitation of Carbides in Quenched Low Carbon Boron Steel, Metallography, Microstructure, and Analysis, Vol. 2, pp. 79-87, 2013.
                [33] Nagaoka T., Kimoto Y., Watanabe H., Fukusumi M., Morisada Y. and Fujii H., Friction stir processing of a D2 tool steel layer fabricated by laser cladding, Materials & Design, Vol. 83, pp. 224-229, 2015.
                [34] Khademi A. R. and Afsari A., Fabrications of Surface Nanocomposite by Friction Stir Processing to Improve Mechanical and Microstructural Properties of Low Carbon Steel, Transactions of the Indian Institute of Metals, 2016.