بررسی تأثیر اندازه دانه ابزار مسی اکسترود شده در کانال های هم مقطع زاویه دار بر روی سایش الکترود در فرآیند ماشینکاری تخلیه الکتریکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 دانشیار، گروه مهندسی مکانیک، واحد تیران، دانشگاه آزاد اسلامی، تیران، اصفهان، ایران

3 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد نجف آباد، نجف آباد، ایران

چکیده

ماشینکاری تخلیه الکتریکی یکی از مهمترین فرآیندهای ماشینکاری نوین در صنعت امروزی است. سایش ابزار در این عملیات بواسطه ماهیت فرایند موجب کاهش دقت ابعادی قطعات تولیدی می­شود، از اینرو تلاش جهت کاهش سایش ابزار یکی از مهمترین چالشهای پیش رو در این عملیات است. به همین دلیل در این تحقیق با به کارگیری یکی از روش­های تغییر شکل شدید، تاثیر کاهش اندازه دانه­های الکترود مسی بر روی سایش ابزار اسپارک مورد مطالعه قرار گرفته است. به این منظور میله­های مسی، تحت فرآیند اکسترود در کانال­های هم مقطع زاویه­دار، قرار گرفتند و با استفاده از آزمایش پراش الکترون­های به عقب رانده شده مشخص گردید میانگین اندازه دانه­های مس، از 8/60 به 48/5 میکرومتر کاهش یافته است. تاثیر زمان روشنی پالس، شدت جریان جرقه و اندازه دانه الکترود بر روی سایش ابزار، بررسی شد. نتایج این تحقیق نشان می دهد که در نرخ براده برداری زیاد سایش ابزار اکسترود شده به میزان 8/36 درصد، نسبت به ابزار معمولی کاهش می­یابد، اما در نرخ براده برداری کم که سایش ابزار زیاد نمی­باشد تاثیر قابل توجهی بین سایش دو نوع ابزار مشاهده نگردید.

کلیدواژه‌ها

موضوعات


1-     

[1]   Ghoreyshi M., Assarzade S., Advanced Machining Processes, pp. 161-196, Tehran: Khajeh Nasir Toosi University of Technology, 2010. (In Persian)
[2]   Pham D., Ivanov A., Bigot S., Popov K., Dimov S., An investigation of tube and rod electrode wear in micro EDM drilling, The International Journal of Advanced Manufacturing Technology, Vol. 33, Issue. 1-2, pp. 103-109, 2007.
[3]   Marafona J., Black layer characterization and electrode wear ratio in electrical discharge machining (EDM), Journal of Materials Processing Technology, Vol 184, Issues. 1–3, pp. 27-31, 2007.
[4]   Uhlmann E., Roehner M., Investigations on reduction of tool electrode wear in micro-EDM using novel electrode materials, CIRP Journal of Manufacturing Science and Technology, Vol 1, Issue 2, pp. 92-96, 2008.
[5]   Abdulkareem S., Ali Khan A., Konneh M., Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining, The International Journal of Advanced Manufacturing Technology, Vol 45, Issue 11-12, pp. 1146-1151, 2009.
[6]   Uhlmann E., Rosiwal S., Bayerlein K., Röhner M., Influence of grain size on the wear behavior of CVD diamond coatings in micro-EDM, The International Journal of Advanced Manufacturing Technology, Vol 47, Issue 9-12, pp. 919-922, 2010.
[7]   Zhu Ch., Ma A., Jiang J., Li X., Song D., Yang D., Yuan Y., Chen J., Effect of ECAP combined cold working on mechanical properties and electrical conductivity of Conform-produced Cu–Mg alloys, Journal of Alloys and Compounds, Vol 582, pp. 135-140, 2014.
[8]   Miyajima Y., Okubo S., Abe H., Okumura H., Fujii T., Onaka S., Kato M., Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing, Materials Characterization, Vol 104, pp. 101-106, 2015.
[9]   Matoofi F., Copper Heat Treatment And Its Alloy Standards, Tehran: Fadak Isatis, 2006. (In Persian)
[10]               Brooks C. R., Heat Treatment, Structure, and Properties of Nonferrous Alloys, Tehran: Iran University Press, 2001.
[11]               ASTM E8/E8M _ 13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2013.
[12]               DIN 50125, Testing of Metallic Materials - Tensile Test Pieces, DIN German Institute for Standardization, 2009.
[13]               Iwahashi Y., Horita Z., Nemoto M., Langdon T., The process of grain refinement in equal-channel angular pressing, Acta Materialia, Vol 46, Issue 9, pp. 3317-3331, 1998.
[14]               Vijayashakthivel A.T., Srikantha Dath T.N., Krishnamurthy R., Response of copper to Equal Channel Angular Pressing with different processing temperature, Procedia Engineering, Vol 97, pp. 56-63, 2014
[15]               Han Y., Li J., Huang G., Lv Y., Shao X., Lu W., Zhang D., Effect of ECAP numbers on microstructure and properties of titanium matrix composite, Materials & Design, Vol 75, pp. 113-119, 2015.
[16]               Hoseini M., Meratian M., Toroghinejad M. R., Szpunar J. A., Texture contribution in grain refinement effectiveness of different routes during ECAP, Materials Science and Engineering, Vol 497, Issues 1–2, pp. 87-92, 2008.
[17]               Bian L., Liang W., Xie G., Zhang W., Xue J., Enhanced ductility in an Al–Mg2Si in situ composite processed by ECAP using a modified BC route, Materials Science and Engineering, Vol 528, Issue 9, pp. 3463-3467, 2011.
[18]               Klocke F., Schwade M., Klink A., Veselovac D., Analysis of material removal rate and electrode wear in sinking EDM roughing strategies using different graphite grades, Procedia CIRP, Vol 6, pp. 163-167, 2013.
[19]              Zarepour H., Fadaei Tehrani A., Karimi D., Amini S., Statistical analysis on electrode wear in EDM of tool steel DIN 1.2714 used in forging dies, Journal of Materials Processing Technology, Vol 187–188, pp. 711-714, 2007.