کنترل فعال ارتعاشات یک تیر هوشمند دوار با استفاده از وصله‌های پیزوالکتریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه مکانیک، دانشگاه شهرکرد، شهرکرد، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه اصفهان، اصفهان، ایران

چکیده

در این مقاله کنترل فعال ارتعاشات یک تیر دوار یک‌سر گیردار هوشمند به کمک وصله‌های پیزوالکتریک حسگری و عملگری روی سطوح خارجی آن بررسی شده‌است. معادلات حرکت با استفاده از روش المان محدود و به کمک المان‌های 6 و 9 درجه برای قسمت‌های فاقد وصله و قسمت‌های شامل آن‌ها، گسسته‌سازی شده‌است. چند نوع مختلف کنترل‌کننده مانند LQR، LQG و پسخورد سرعت برای کنترل فعال نوسانات استفاده شده‌است. نتایج شبیه‌سازی نشان می‌دهد کنترل‌کننده LQR به‌دلیل پسخورد همه حالت‌های سیستم عملکرد بهتری از نظر زمان نشست دارد. درحالی‌که کنترل‌کننده پسخورد سرعت فقط به داده‌های سنسورهای پیزوالکتریک نیاز داشته و بنابراین به‌کار‌گیری آن مقرون به‌صرفه‌تر و عملی‌تر است. در این مقاله همچنین اثر تعداد زوج وصله‌های پیزوالکتریک روی کنترل ارتعاشات تیر با در نظر گرفتن چهار جفت وصله در نقاط مختلف تیر مطالعه شده‌است.

کلیدواژه‌ها


[1]  Mao Q., and Pietrzko S., Shunt Piezoelectric Circuits,  in: Control of Noise and Structural Vibration: A MATLAB®-Based Approach, Eds., pp. 325-366, London: Springer London, 2013.
[2]  Lee C. K., Chiang W. W., and O’Sullivan T. C., Piezoelectric modal sensor/actuator pairs for critical active damping vibration control. The Journal of the Acoustical Society of America, Vol. 90,No. 1, pp. 374-384, 1991.
[3]  Saravanos D. A., Mixed Laminate Theory and Finite Element for Smart Piezoelectric Composite Shell Structures. AIAA Journal, Vol. 35, No. 8, pp. 1327-1333, 1997.
[4]  Bruant I., Coffignal G., Lene F., and Verge M., Active control of beam structures with piezoelectric actuators and sensors: modeling and simulation. Smart materials and structures, Vol. 10, No. 2, pp. 404-408, 2001.
[5]  Narayanan S., and Balamurugan V., Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators. Journal of Sound and Vibration, Vol. 262, No. 3, pp. 529-562, 2003.
[6]  Dadfarnia M., Jalili N., Liu Z., and M. Dawson D., An observer-based piezoelectric control of flexible Cartesian robot arms: theory and experiment. Control Engineering Practice, Vol. 12, No. 8, pp. 1041-1053, 2004.
[7]  Seba B., Ni J., and Lohmann B., Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis. Smart materials and structures, Vol. 15, No. 2, pp. 509-517, 2006.
[8]  Roy T., and Chakraborty D., Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm. Journal of Sound and Vibration, Vol. 319, No. 1–2, pp. 15-40, 2009.
[9]  Kapuria S., and Yasin M. Y., Active vibration control of piezoelectric laminated beams with electroded actuators and sensors using an efficient finite element involving an electric node. Smart Materials and Structures, Vol. 19, No. 4, pp. 045019, 2010.
[10]         Zorić N. D., Simonović A. M., Mitrović Z. S., and Stupar S. N., Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation. Journal of Intelligent Material Systems and Structures, Vol. 24, No. 1, pp. 499-526, 2012.
[11]         Jovanović M. M., Simonović A. M., Zorić N. D., Lukić N. S., Stupar S. N., and Ilić S. S., Experimental studies on active vibration control of a smart composite beam using a PID controller. Smart Materials and Structures, Vol. 22, No. 11, pp. 1-8, 2013.
[12]         Hasheminejad S. M., and Vahedi M., Active vibration control of a thick piezolaminated beam with imperfectly integrated sensor and actuator layers. International Journal of Automation and Control, Vol. 8, No. 1, pp. 58-87, 2014.
[13]         S. Aligholizadeh, M. A. Hamed, and Qadim R. H., Active vibration control of the clamped beam with length and location optimized piezoelectric patches. Modares Mechanical Engineering, Vol. 15, No. 9, pp. 11-22, 2015.  (in Persian)
[14]         Choi S. B., and Han M. S., Vibration control of a rotating cantilevered beam using piezoactuators: experimental work. Journal of Sound and Vibration, Vol. 277, No. 1–2, pp. 436-442, 2004.
[15]         Thakkar D., and Ganguli R., Dynamic response of rotating beams with piezoceramic actuation. Journal of Sound and Vibration, Vol. 270, No. 4–5, pp. 729-753, 2004.
[16]         El-Din M. A., and Tawfik M., Vibration attenuation in rotating beams with periodically distributed piezoelectric controllers. In 13th International Congress on Sound and Vibration (ICSV’06), Vienna, Austria, 2006.
[17]         Murtagh P. J., Ghosh A., Basu B., and Broderick B. M., Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence. Wind Energy, Vol. 11, No. 4, pp. 305-317, 2008.
[18]         Chandiramani N. K., Active control of a piezo-composite rotating beam using coupled plant dynamics. Journal of Sound and Vibration, vol. 329, no. 14, pp. 2716-2737, 2010.
[19]         Botta F., Marx N., Dini D., and Battista G., Experimental results for optimal placement of piezoelectric plates for active vibration control of a cantilever beam. International Journal of Engineering and Technology, Vol. 5, No. 5, pp. 4489-4494, 2013.
[20]         Fitzgerald B., Basu B., and Nielsen S. R., Active tuned mass dampers for control of in-plane vibrations of wind turbine blades. Structural Control and Health Monitoring, Vol. 20, No. 12, pp. 1377-1396, 2013.
[21]         Piefort V., Finite element modelling of piezoelectric active structures, Ph.D. Thesis, Université Libre de Bruxelles, 2001.
[22]         Baruh H., Analytical dynamics  WCB/McGraw-Hill, Boston, 1999.
[23]         Burns R. S., Optimal and robust control system design  Butterworth-Heinemann, Oxford, 2001.
[24]         Choi S. B., and Han M. S., Vibration control of a rotating cantilevered beam using piezoactuators: experimental work. Journal of sound and vibration, Vol. 277,No. 1, pp. 436-442, 2004.