خواص ویسکوالاستیک گرافت های رگ: مقایسه بین شریان سینه‌ای داخلی و ورید سافنوس کوچک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مرکز تحقیقات آترواسکلروزیس، دانشگاه علوم پزشکی بقیه‌الله، تهران، ایران

2 کارشناسی ارشد، گروه مهندسی مکانیک ، دانشگاه علم و صنعت ایران، تهران، ایران

3 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

شریان سینه‌ای داخلی (ITA) و ورید سافنوس کوچک (SSV) دو گزینه مناسب برای پیوند بایپس شریان کرونری هستند. هدف این مطالعه بررسی خواص ویسکوالاستیک شریان سینه‌ای داخلی و ورید سافنوس کوچک تحت کشش و فشار در دمای بدن است. از تحلیل پویای مکانیکی (DMA)  برای اندازه‌گیری خواص ویسکوالاستیک این دو رگ در دما و فرکانس بارگذاری مناسب استفاده شد. مدول ذخیره، مدول اتلافی و زاویه فاز هر دو رگ در دمای 1±37 درجه سلسیوس و تحت فرکانس بارگذاری 1 تا 2 هرتز بررسی شد.متوسط مدول‌های ذخیره و اتلافی SSV بیشتر از ITA بود. به‌علاوه SSV سفتی و اصطکاک داخلی بیشتری در فشار در مقایسه با کشش داشت. باوجوداینکه ITA در کشش سفت‌تر بود، مدول اتلافی کششی و فشاری آن تفاوت قابل توجهی نداشتند. این امر منجر به رفتار لزجتر این شریان در جهت شعاعی شد. نتایج این مطالعه نشان می‌دهند که SSV سفتی بیشتر و رفتار لزج کمتری نسبت به ITA دارد و این امر در جهت شعاعی تشدید می‌شود. یافته‌های این مطالعه می‌تواند به درک بهتر رفتار مکانیکیاین دو رگ کمک کند.

کلیدواژه‌ها

موضوعات


[1] Drake R., Vogl A. W., and Mitchell A. W., Gray's anatomy for students, Elsevier Health Sciences, 2014.
[2] Mendoza E., Lattimer C. R., and N. Morrison, Duplex ultrasound of superficial leg veins: Springer, 2014.
[3] Lytle B., Loop F. D., Cosgrove, D. Ratliff N., Easley K., and Taylor P., Long-term (5 to 12 years) serial studies of internal mammary artery and saphenous vein coronary bypass grafts, The Journal of Thoracic and Cardiovascular Surgery, Vol. 89, pp. 248-258, 1985.
[4] Chang B. B., Paty P. S., Shah D. M., and. Leather R. P, The lesser saphenous vein: an underappreciated source of autogenous vein, Journal of vascular surgery, Vol. 15, pp. 152-157, 1992.
[5] Konig G., McAllister T. N., Dusserre N., Garrido S. A., Iyican C., Marini A., et al., Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery, Biomaterials, Vol. 30, pp. 1542-1550, 2009.
[6] Sarwar U., Chetty G., and Sarkar P., The short saphenous vein: A viable alternative conduit for coronary artery bypass grafts harvested using a novel technical approach, Journal of surgical technique and case report, Vol. 4, pp. 61-63, 2012.
[7] Goldman S., Zadina K., Moritz T., Ovitt T., Sethi G., Copeland, J. G. et al., Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study, Journal of the American College of Cardiology, Vol. 44, pp. 2149-2,  2004, 156.
[8] Kwan K. S., The role of penetrant structure in the transport and mechanical properties of a thermoset adhesive, Virginia Polytechnic Institute and State University, 1998.
[9] Menard K. P., Dynamic mechanical analysis: a practical introduction: CRC press, 2008. R. A
[10] Favaloro R. G., Effle D. B.r, Cheanvecha C. i,. Quint, and Sones F. M., Acute coronary insufficiency (impending myocardial infarction and myocardial infarction): surgical treatment by the saphenous vein graft technique, The American journal of cardiology, Vol. 28, pp. 598-607, 1971.
[11] Johnson, W. D. Flemma R. J., Lepley Jr D., and Ellison E. H., Extended treatment of severe coronary artery disease: a total surgical approach, Annals of surgery, Vol. 170, p. 460, 1969.
[12] Bailey C., and Hirose T., Successful internal mammary-coronary arterial anastomosis using aminivascular suturing technic, International surgery, Vol. 49, p. 416, 1968.
[13] Green G. E., Internal mammary artery-to-coronary artery anastomosis: three-year experience with 165 patients, The Annals of thoracic surgery, Vol. 14, pp. 260-271, 1972.
[14] Walden R., Gilbert J., Megerman J., and Abbott W. M., Matched elastic properties and successful arterial grafting, Archives of Surgery, Vol. 115, pp, 1980, 1169-1166.
[15] Zamboni P., Portaluppi F., Marcellino M. G., Quaglio D., Manfredin R.i, Feo C. V., et al., In vitro versus in vivo assessment of vein wall properties, Annals of vascular surgery, Vol. 12, pp. 324-329, 1998.
[16] Chamiot-Clerc, P. Copie X., Renaud J.-F., Safar M., and X. Girerd, Comparative reactivity and mechanical properties of human isolated internal mammary and radial arteries, Cardiovascular research,Vol. 37, pp. 811-819, 1998.
[17] van Andel C. J., Pistecky P. V., and. Borst C., Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors, The Annals of thoracic surgery,Vol. 76, pp. 58-64, 2003.
[18] Li M., Beech-Brandt J., John L., P. Hoskins, and W. Easson, Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses, Journal of biomechanics,Vol. 40, pp. 3715-3724, 2007.
[19] Khosravi A., Bani M. S., Bahreinizad H., and Karimi A., A computational fluid-structure interaction model to predict the biomechanical properties of the artificial functionally graded aorta, Bioscience Reports, p. BSR20160468, 2016.
[20] Fung Y.-c., Biomechanics: mechanical properties of living tissues: Springer Science & Business Media, 2013.
[21] Sarkar S., Salacinski H., Hamilton G., andSeifalian A., The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency, European journal of vascular and endovascular surgery,Vol. 31, pp. 627-636, 2006.
[22] Lozano R., Naghav M.i, Foreman K., Lim S., Shibuya K., Aboyans V., et al., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010, The Lancet, Vol. 380, pp. 2095-2128, 2013.
[23] Yusuf S., Zucker D., Passamani E., P. Peduzzi, T. Takaro, Fishe L.r, et al., Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration, The Lancet, Vol. 344, pp. 563-570, 1994.
[24] Galbut D. L., Traad E. A., Dorman M. J., DeWitt P. L., Larsen P. B., Kurlansky P. A., et al., Bilateral internal mammary artery grafts in patients with left main coronary artery disease, Journal of cardiac surgery, Vol. 8, pp. 18-24, 1993.
[25] Shah P. J., Gordon I., Fuller J., Seevanayagam S., Rosalion A., Tatoulis J., et al., Factors affecting saphenous vein graft patency: clinical and angiographic study in 1402 symptomatic patients operated on between 1977 and 1999, The Journal of Thoracic and Cardiovascular Surgery, Vol. 126, pp. 1972-1977, 2003.
[26] Davies A., T. Magee, Baird R., Sheffield E., and Horrocks M., Vein compliance: a preoperative indicator of vein morphology and of veins at risk of vascular graft stenosis, British journal of surgery, Vol. 79, pp. 1019-1021, 1992.
[27] Perktold K. and Rappitsch G., Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model, Journal of biomechanics, Vol. 28, pp. 845-856, 1995.
[28] Oshima M., Torii R., T. Kobayashi, Taniguchi N., and K. Takagi, Finite element simulation of blood flow in the cerebral artery, Computer methods in applied mechanics and engineering, Vol. 191, pp. 661-671, 2001.
[29] Lally C., Dolan F., and Prendergast P., Cardiovascular stent design and vessel stresses: a finite element analysis, Journal of biomechanics, Vol. 38, pp. 1574-1581, 2005.