شبیه سازی عددی تولید قطره از یک محفظه متقارن محوری به کمک حباب جرقه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی مکانیک دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران

2 دانشیار، دانشگاه صنعتی ارومیه، دانشکده مهندسی مکانیک، ارومیه، ایران

چکیده

تولید کننده­های میکرو قطره به دلیل کاربردهای روز افزون، به زمینه تحقیقاتی مهمی تبدیل شده است. محققان روش­های مختلفی را برای تولید میکرو قطرات کنترل شده ارائه کرده­اند. در این مقاله تولید قطره به کمک حباب جرقه­ای از طریق یک محفظه متقارن محوری بررسی شده است. فرایند شامل رشد و فروپاشی حباب و تشکیل قطره تا لحظه جدایش می­باشد. کانتورهای فشار و بردارهای سرعت سیال اطراف حباب با استفاده از ترکیب روش المان مرزی و تفاضل محدود به دست آمده و تأثیر پارامتر قدرت، عمق محفظه و زاویه کانال تغذیه بر دینامیک حباب و قطره مورد ارزیابی قرار می­گیرد. نتایج نشان می­دهد که با افزایش پارامتر قدرت، طول قطره و حجم آن افزایش و جدایش قطره سریعتر اتفاق خواهد افتاد. با افزایش زاویه کانال تغذیه، طول قطره و حجم آن افزایش می­یابد. بیشترین زمان جدایش متعلق به زاویه 15- درجه است. با افزایش عمق محفظه، طول قـطره افزایش خواهد یافت. همچنین به ازای زاویه 15- درجه، زمان جدایش قطره افزایش و حجم آن کاهش می یابد در حالی که برای زاویه­های 0 و 15 درجه زمان جدایش قطره کاهش و حجم آن افـزایش خواهد یافت. به علاوه، با افزایش فاصله حباب از سطح آزاد، حجم قطره کاهش می­یابد.

کلیدواژه‌ها

موضوعات


[1]  Robert E., Dynamic of a Cavitation Bbubble Inside A Liquid Jet, Diploma Work, University of Ecole Polytechnique, Lausanne Suisse, 2004.
[2]  Klaseboer E., Turangan C. K. and Khoo B. C., Dynamic Behavior of a Bubble near an Elastic Infinite Interface. InternationalJournal of Multiphase Flow, Vol. 32, pp. 1110–1122, 2006.
[3]  Brenner M. P., Hilgenfeldt S. and Lohse D., Single-Bubble Sonoluminescence. Reviews of modern physics, Vol. 74, pp. 425–484, 2002.
[4]  Benjamin T. B. and Ellis A. T., The Collapse of Cavitation Bubbles and Pressure thereby Produced against Solid Boundary. Philos. Trans. R. Soc, Vol. 260, No. 1110, pp. 221–240, 1966.
[5]  Guerri L., Lucca G. and Prosperetti A., A Numerical Method For The Dynamics Of Non- Spherical Cavitation Bubbles. In Proceedings of the 2nd International Colloquium on Drops and Bubbles, pp. 175–181 , 1981.
[6]  Baker G. R. and Moore D. W., The rise and distortion of a two-dimensional gas bubble in an inviscid liquid. Phys. Fluids, Vol. 1, pp. 1451-1459, 1989.
[7]  Best J. P. and Kucera A., A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech, Vol. 245, pp. 137-154, 1992.
[8]  Brujan E. A., Keen G. S., Vogel A. and Blake J. R., The final stage of the collapse of a cavitation bubble close to a rigid boundary. Physics of fluids, Vol. 14, No. 1, pp. 85–92, 2002.
[9]  Blake J. R. and Gibson D. C., Growth and collapse of a vapour cavity near a free surface. Journal of Fluid Mechanics, Vol. 111, pp. 123–140, 1981.
[10] Wang Q. X., Yeo K. S., Khoo B. C. and Lam K. Y., Strong Interaction Between Buoyancy Bubble and Free Surface. Theoretical and Computational Fluid Dynamics, Vol. 8, pp. 73-88, 1996.
[11] Wang Q. X., Yeo K. S., Khoo B. C. and Lam K. Y., Nonlinear interaction between gas bubble and free surface. Computers & Fluids, Vol. 25, pp. 607-628, 1996.
[12] Shervani-Tabar M. T., Dynamics of A Pulsating Bubble Beneath A Free Surface. In Proceedings of DETC02, ASME2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada, 2002.
[13] Shervani-Tabar M. T.,  Computer Study of A Cavity Bubble Neara Rigid Boundary, A free surface and A compliant wall, PhD Thesis, University of Wollongong, Wollongong, Australia, 1995.
[14] Khoo B. C., Klaseboer E. and Hung K. C., A collapsing bubble-induced micro-pump using the jetting effect. Sensors and Actuators A: Physical , Vol. 118, pp. 152–161, 2005.
[15] Zhang A. M., Wang S. P., Huang C. and Wang B., Influences of initial and boundary conditions on underwater explosion bubble dynamics. Eur. J. Mech. –B/Fluids, Vol. 42, pp. 69−91, 2013.
[16] Dadvand  A., Dawoodian M., Khoo B. C. and Esmaily R., Spark-generated bubble collapse near or inside a circular aperture and the ensuing vortex ring and droplet formation. Acta Mechanica Sinica, Vol. 29, pp. 657–666, 2013.
[17] Myers R. A. and Tamulis J. C., Introduction to Topical Issue on Non-Impact Printing Technologies. IBM Journal of Research and Development, Vol. 28, pp. 234–40, 1984.
[18] Buehner W. L., Hill J. D., Williams T. H. and Woods J. W., Application of Ink-jet Technology to  a Word Processing Output Printer. IBM Journal of Research and Development, Vol. 21, pp. 2–9, 1977.
[19] Ashley C. T., Edds K. E. and Elbert D. L., Development and Characterization of Ink for an Electrostatic Ink Jet Printer. IBM Journal of Research and Development, Vol. 21, pp. 69–74, 1977.
[20] Nielsen N. J., History of ThinkJet Printhead Development.Hewlett-Packard Journal, Vol. 36, No. 5, pp. 4–10, 1985.
[21] Allen R. R., Meyer J. D. and Knight W. R., Thermodynamics and Hydrodynamics of Thermal ink jets. Hewlett-Packard Journal, Vol. 36, No. 5, pp. 21-27, 1985.
[22] Chen P. H., Peng H. Y., Liu H. Y., Chang S. L., Wu T.I., and Cheng C. H., Pressure response and droplet ejection of a piezoelectric inkjet printhead. International Journal of Mechanical Sciences, Vol. 41, pp. 235–48, 1999.
[23] Hirata S., Ishii Y., Matoba H. and Inui T., An Ink-Jet Head Using Diaphragm Microactuator. Proc. of the 9th IEEE Micro Electro Mechanical Systems Workshop, pp. 418–23, San Diego, 1996.
[24] Vera A. J., Study of the Parameters to Generate Different Sizes of Micro-Droplets, Master thesis, Norwegian University of Science and Technology, 2013.
[25] Rembe C., Patzer J., Hofer E. P. and Kreh P., Real-cinematographic visualization of droplet ejection in thermal ink jets. J. Imaging Sci. Technol, Vol. 2658, pp. 400-404, 1996.
[26] Chen A. U. and Basaran O. A., A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Physics of Fluids, Vol.14, pp. L1-L4, 2002.
[27] Fromm J., A numerical study ofdrop-on-demand ink jets. Proceedings of the Second International Colloquium on Drops and Bubbles, Monterey, CA, NASA JPL Publication, pp. 82–7, 1981.
[28] Fromm J., Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM Journal of Research and Development, Vol. 28, pp. 322-33, 1984.
[29] Xu Q. and Basaran O. A., Computational analysis of drop-on-demand drop formation. Physics of Fluids, Vol. 19, pp. 1-12, 2007.
[30] Dadvand A., Shervani-Tabar M. T. and Khoo B. C., A note on spark bubble drop-on demand droplet generation: simulation and experiment. TheInternational Journal of Advanced Manufacturing Technology, Vol. 56, pp. 245–259, 2011.
[31] Saleki-Haselghoubi N., Shervani-Tabar M. T., Taeibi-Rahni M. and Dadvand A., Numerical study on the oscillation of a transient bubble near a confined free surface for droplet generation. Theoretical and Computational Fluid Dynamics, Vol. 28, pp. 449-472, 2014.
[32] Saleki-Haselghoubi, N., Shervani-Tabar, M.T., Taeibi-Rahni, M. and Dadvand, A., Interaction of two spark-generated bubbles near a confined free surface. Theor. Comput. Fluid Dyn, 30 (3), 185–209,  2016.
[33] Liu N. N., Wu W. B., Zhang A. M. and Lio Y. L., Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate. Physics of Fluids, Vol. 29. No. 107102, 2017.
[34] Blake J. R. and Gibson D. C., Cavitation bubbles near boundaries. Ann Rev Fluid Mech, Vol. 19, pp. 99–123, 198.
[35] Taib B. B., Boundary Integral Methods Applied To Cavitation Bubble Dynamics. PhD Thesis, University Of Wollongong, Wollongong, Australia, 1985.
[36] Arfken G. B. and Weber H. J., Mathematical Methods ForPhysicists. Sixth Edition, pp. 1005-1036, New York, Elsevier, 2005.
[37] Longuet-Higgins M. S. and Cokelet E. D., The Deformation of Steep Surface Waves on Water. I. A Numerical Method of Computation. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. A, Vol. 350, pp. 1–26, 1976.
[38] Best J. P., The Dynamics of underwaterexplosions, Ph.D. thesis, University of Wollongong, Wollongong, Australia, 1991.
[39] Shervani-Tabar M. T., Dadvand A., Khoo B. C. and Nobari M. R. H., A numerical and experimental study of a collapsing bubble-induced droplet ejector. Theor Comput Fluid Dyn, Vol. 23, No.4, pp. 297–316, 2009
[40] Dadvand A., Khoo B. C., Shervani-Tabar M. T. and Khalilpourazary S., Boundary element analysis of the droplet dynamics induced by spark-generated bubble. Engineering Analysis with Boundary Elements, Vol. 36, pp. 1595- 1603, 2012.