بررسی اثرات تغییر قطر لوله خروجی آئروسیکلون برعملکرد آن در جریان دو فازی گاز و قطره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مکانیک، دانشگاه سمنان، سمنان، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

چکیده

در این پژوهش، اثرات کوچک کردن قطر خروجی آیروسیکلون بر عملکرد آن مورد بررسی قرار می گیرد. برای پیش بینی راندمان جداسازی قطرات و الگوی جریان درون آیروسیکلون از مدل آشفتگی تنش رینولدزی (RSM) استفاده شده است. روش عددی استفاده شده در کار حاضر روش اویلری-لاگرانژی بوده است. به دلیل انحراف هسته گرابه، حل انجام گرفته به صورت ناپایا و در مدت زمان 73/0 ثانیه صورت می گیرد. با کوچک شدن قطر خروجی افت فشار و سرعت مماسی افزایش می یابد. همچنین با کاهش قطر لوله خروجی (به عنوان مثال در سرعت 10 متر بر ثانیه) عدد اویلر افزایش می یابد. با افزایش عدد رینولدز، عدد اویلر تقریباً به صورت ثابت باقی می ماند. اثرات عبارت انعکاسی دیواره در مدل آشفته RSM برمیدان جریان و حرکت قطرات بررسی شده است. با اعمال کردن عبارت انعکاسی دیواره نتایج عددی به نتایج آزمایشگاهی نزدیکتر می شود. نتایج شبیه سازی نشان می دهد که سیکلونهای با قطر خروجی کوچکتر بازدهی بیشتری نسبت به دیگر سیکلون ها دارند.

کلیدواژه‌ها


[1]   Shukla S. K., Shukla P. & Ghosh P., The effect of modeling of velocity fluctuations on prediction of collection efficiency of cyclone separators, Applied Mathematical Modelling, Vol. 37, pp. 5774–5789, 2013.
[2]    Karagoz I. & Avci A. Modelling of the pressure drop in tangential inlet cyclone separators. Aerosol Science and Technology, Vol. 39, pp. 857–865, 2005.
[3]   Brar L. S., Sharma R. P., Elsayed K. The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone. Powder Technology. Vol. 286, pp. 668–677, 2015.
[4]   Hwang K.-J., Hwang Y.-W., Yoshida H. Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics. Chemical Engineering Sciences, Vol. 85, pp. 62–68, 2012.
[5]   Gao X., Chen J., Feng J., Peng X., Numerical investigation of the effects of the central channel on the flow field in an oil–gas cyclone separator, Computers and Fluids, Vol. 92, pp.45–55, 2013.
[6]   Shi L., Bayless D. J., Comparison of boundary conditions for predicting the collection efficiency of cyclones,  Powder Technology, Vol. 173, pp. 29–37, 2007.
[7]   Boysan F., Ayers W. H. & Swithenbank J. A fundamental mathematical modelling approach to cyclone design. Transactions of the Institution of Chemical Engineering, Vol. 60, pp. 222–230, 1982.
[8]   Horvath A., Jordan C., & Harasek M. A., Horvath C., Jordan M., Harasek, Influence of vortex-finder diameter on axial gas flow in simple cyclone, Chemical Product and Process Modeling, Vol. 3 (No.1), pp.1– 26, 2008.
[9]   Gimbun J., CFD simulation of aerocyclone hydrodynamics and performance at extreme temperature. Engineering Applications of Computational Fluid Mechanics, Vol. 2, pp. 22–29, 2008.
[10]              Hoffmann A. C., De Groot M., Peng W., Dries H. W. A., Kater J., Advantages and risks in increasing cyclone separator length. AIChE Journal, Vol. 47, pp. 2452–2460, 2001.
[11]              Xiang R. B., Lee K. W., Numerical study of flow field in cyclones of different height. Chemical Engineering and Processing: Process Intensification, Vol. 44, pp.877–883, 2005.
[12]              Zhu Y., Lee K. W. Experimental study on small cyclones operating at high flow rates. Journal of Aerosol Sciences, Vol. 30, pp. 1303–1315, 1999.
[13]              Avci A., Karagoz I., Effects of flow and geometrical parameters on the collection efficiency in cyclone separators, Journal of Aerosol Sciences, Vol. 34, pp. 937–955, 2003.
[14]              Kȩpa, A., The efficiency improvement of a large-diameter cyclone - The CFD calculations, Separation and Purification Technology, Vol. 118, pp. 105–111, 2013.
[15]              Surmen A., Avci A., Karamangil M. I., Prediction of the maximum-efficiency cyclone length for a cyclone with a tangential entry, Powder Technology, Vol. 207, pp.1–8, 2011.
[16]              Lee J. W., Yang H. J. & Lee D. Y. Effect of the cylinder shape of a long-coned cyclone on the stable flow-field establishment. Powder Technology, Vol. 165, pp. 30–38, 2006.
[17]              O’Rourke P. J. & Amsden A. A., A spray/wall interaction submodel for the KIVA-3 wall film model, SAE Technical Paper, No.:2000-01-0271, 2000.
[18]              Hoekstra A.J., Gas flow field and collection efficiency of cyclone separators, TU Delft, Ph.D. Thesis, Delft University of Technology, Netherlands, 2000.
[19]              Gao X., Chen J., Feng J., Peng X., Hoffmann A.J., Stein L.E. Gas cyclones and swirl channels: principles, design and operation. Beijing: Chemical Industry Press; 2004. Computers and Fluids, Vol. 92, pp. 45–55, 2013.
[20]              Fluent. 6.2.3, User’s Guide Document, Fluent Inc., 2006.
[21]              Cortés, C., Gil, A., Modeling the gas and particle flow inside cyclone separators. Progress in Energy and Combustion Science, Vol. 33, pp. 409–452, 2007.
[22]              Hadzic’ I., Second-moment closure modeling of transitional and unsteady Turbulent flows. Ph.D. thesis, Faculty of Technical physics, Delft University of Technology, 1999.
[23]  نعمت بخش ع.، حل عددی جریان های با سطح مشترک با استفاده از روش لول ست و مقایسه آن با روش کسر حجمی سیال، پایان نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان، 1387.