[1] Fleifil M., Annaswamy A.M., Ghoneim A,A,, Ghoneim A.F., Response of a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic instability results.Combustion and Flame, 106, pp.487-510, 1996.
[2] Chaparro A.A., Cetegen B.M., Blowoff characteristics of bluff-body stabilized conical premixed flames under upstream velocity modulation, Combustion and Flame 144, pp.318-335, 2006.
[3] Chaudhuri S., Cetegen B.M., Blowoff characteristic of bluff-body stabilized conical premixed flames with upstream spatial mixture gradients and velocity oscillations, Combustion and Flame 153, pp. 616-633, 2008.
[4] Hahn W.A., Wendt J.O.L., NOx formation in flat, laminar, opposed jet methane diffusion flames, Symposium (International) on Combustion 18 (1) pp.121–131, 1981.
[5] N.A. Räkke, J.E. Hustad, O.K. Sänju, F.A. Williams, Scaling of nitric oxide emissions from buoyancy-dominated hydrocarbon turbulent-jet diffusion flames, Symposium (International) on Combustion 24 (1), pp.385–393, 1992.
[6] Chen J.Y., Chang W.C., Flamelet and PDF modeling of CO and NOx emissions from a turbulent, methane hydrogen jet nonpremixed flame, Symposium (International) on Combustion 26 (2), pp.2207–2214, 1996.
[7] Yamashita H., Nishioka M., Takeno T., Prediction of NOx production rate in the turbulent diffusion flame, Energy Conversion and Management 38 (13–10), pp.1343–1352, 1997.
[8] Kok J.B.W., Louis J.J.J., Yu J.H., IRST model for turbulent premixed non-adiabatic methane flames, Combustion Science and Technology 149 (1), pp. 225–246, 1999.
[9] Yamashita H., Numerical study on NOx production of transitional fuel jet diffusion flame, JSME International Journal, Series B 43 (1), pp.97–103, 2000.
[10] Muppala S.P.R., Wen J.X., N.K. Aluri Modelling issues of lean high-pressure turbulent premixed hydrogen-enriched hydrocarbon combustion at gas turbine conditions (Ed.) Collection of Technical Papers - 5th International Energy Conversion Engineering Conference St. Louis, MO 2007, pp. 271–280.
[11] Lopez-Parra F., Turan A., Computational study on the effects of non-periodic flow perturbations on the emissions of soot and NOx in a confined turbulent methane/air diffusion flame, Combustion Science and Technology 179 (7), pp. 1361–1384, 2007.
[12] Wetzel F., Habisreuther P., N. Zarzalis Numerical investigation of lean blow out of a model gas turbine combustion chamber using a presumed JPDF-reaction model by taking heat loss processes into account (Ed.) Proceedings of the ASME Turbo Expo Barcelona 2006, pp. 41–49.
[13] Wang H.F., Chen Y.L., Chen H.L., Liu M.H., Numerical analysis of instantaneous response of the CH4/O2/N2 laminar flamelet, Jisuan Wuli/Chinese Journal of Computational Physics 23 (2), pp.193–198, 2006.
[14] Ilbas M., Yilmaz I., Veziroglu T.N., Kaplan Y., Hydrogen as burner fuel: modelling of hydrogen–hydrocarbon composite fuel combustion and NOx formation in a small burner, International Journal of Energy Research 29 (11), pp.973–990, 2005.
[15] Ilbas M., Yilmaz I., Kaplan Y., Investigations of hydrogen and hydrogen– hydrocarbon composite fuel combustion and NOx emission characteristics in a model combustor, International Journal of Hydrogen Energy 30 (10), pp.1139–1147, 2005.
[16] Santos A., Costa M., Re-examination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames (Ed.) International Symposium on Combustion, Abstracts of Works-in-Progress Posters Chicago, IL 2004, pp. 170.
[17] Koseki H., Flame stability limit and exhaust emissions of low calorific fuel combustion in turbulent diffusion combustor for a small-scale fuel cell, JSMEInternational Journal, Series B: Fluids and Thermal Engineering 47 (2), pp. 221–227, 2004.
[18] Dally B.B., Riesmeier E., Peters N., Effect of fuel mixture on moderate and intense low oxygen dilution combustion, Combustion and Flame 137 (4), pp. 418–431, 2004.
[19] F.A.T. Lopez-Parra, A. Computational study on the effect of turbulence intensity and pulse frequency in soot concentration in an acetylene diffusion flame. (Ed.) Intl Conference on Computational Sciences ICCS 2005, LCNS 3516, Springer-Verlag Berlin, Heidelberg. 2005, pp. 120–128.
[20] F.A.T. Lopez-Parra, A. Computational study on the effect of pulse characteristics on the soot and NOx formation and combustion in diffusion flames. (Ed.) Proc European Combust Meeting Louvain-la-Neuve, Belgium. 2005.
[21] F.A.T. Lopez-Parra, A. Computational study on the effect of turbulence intensity in soot formation and depletion in an acetylene diffusion flame. (Ed.) Proc European Combust Meeting, Louvain-la-Neuve, Belgium 2005.
[22] Brookes S.J., Moss J.B., Measurements of soot and thermal radiation from confined turbulent jet diffusion flames of methane, Combustion and Flame 116, pp. 49–61, 1999.
[23] Saqr K.M., Aly H.S., Sies M.M., Wahid M.A., Effect of free stream turbulence on NOx and soot formation in turbulent diffusion CH4-air flames, International Communications in Heat and Mass Transfer 37, pp. 611-617,2010.
[24] Hsin-Yi Shih, Chi-Rong Liu, A computational study on the combustion of hydrogen/methane blended fuels for a micro gas turbines, International Journal of Hydrogen Energy 39, pp. 15103-15115, 2014.
[25] Sivathanu YR, Faeth GM. Generalized state relationships for scalar properties in non-premixed hydrocarbon/air flames. Combust Flame, 82 (211), 1990.
[26] Peters N., Turbulent combustion, Cambridge University Press, 2000.
[27] Zeldovich Y.B., The oxidation of nitrogen in combustion and explosions, Acta Physicochimica 21, pp. 577–628, 1946.
[28] R.K. Hanson, S. Salimian, Survey of rate constants in H/N/O systems, in: W.C. Gardiner (Ed.), Combustion Chemistry, 1984.
[30] Fleifil M., Annaswamy A. M., Ghoneim Z. A., Ghoneim A. F., Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results, Combustion and Flame, 106: pp.487-510, 1996.
[31] Wang Fang, Xie Xiang, Jiang Qi, Zhou Lixing, Effect of turbulence on NO formation in swirling combustion, Chinese Journal of Aeronautics, 27(4): pp. 797–804, 2014.
[32] Alemi E., Rajabi Zargarabadi M., Effects of jet characteristics on NO formation in a jet-stabilized combustor, International Journal of Thermal Sciences, Vol. 112, pp. 55–67, 2017.