اندازه گیری تنش‌های پسماند در تکنیک جوشکاری اصطکاکی به روش سوراخکاری مرکزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشجوی کارشناسی، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

3 کارشناس ارشد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

4 استادیار، مرکز تحقیقات جوش و اتصال، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

جوشکاری اصطکاکی اغتشاشی یک جوشکاری حالت‌جامد محسوب می‌شود که امروزه کاربرد گسترده‌ای به‌خصوص در جوشکاری‌های غیر هم‌جنس پیداکرده است، مخصوصاً آلیاژهای آلومینیوم سری 7000 که قابلیت جوشکاری ذوبی را ندارند. این روش نه‌تنها محدودیت‌های جوشکاری ذوبی را ندارد بلکه به دلیل عدم ذوب قطعات امکان اتصال فلزات با نقطه ذوب متفاوت را نیز دارا می‌باشد. در این تحقیق به روش تجربی مطالعه تنش پسماند ناشی از جوشکاری اصطکاکی اغتشاشی غیر متشابه بین آلیاژها7075-T6  و 6061-T6 و مقایسه آن با جوشکاری معمولی ذوبی آلیاژ 6061-T6 به‌وسیله روش سوراخکاری مرکزی صورت گرفته است. همچنین با استفاده از این روش تغییرات تنش پسماند در راستای ضخامت نیز برای دو نمونه اندازه‌گیری گردیده و نشان داده شد که تنش پسماند در جوشکاری اصطکاکی به نسبت کمتر و توزیع یکنواختی نسبت به جوشکاری ذوبی دارد. بیشینه تنش در جوش ذوبی درست در محل خط جوش است ولی در جوش اصطکاکی بافاصله از خط جوش تنش پسماند بیشینه می‌گردد. سختی دو نمونه نیز با روش میکرو سختی سنج ویکرز اندازه‌گیری و با یکدیگر مقایسه گردید. نتایج به‌دست‌آمده نشان داد که در جوش‌کاری اصطکاکی منطقه TMAZ کمترین میزان سختی نسبت به HAZ و ناگت را دارا است اما سختی آن از سختی فلز پایه بیشتر است.

کلیدواژه‌ها


[1]  Bastier A., Maitournam M. H., Roger F., and Dang Van K., Modelling of the residual state of friction stir welded plates, Journal of Materials Processing Technology, vol. 200, pp. 25-37, 5/8/ 2008.
[2]  Castro R. A. S., Richter-Trummer V., and.Tavares S. M. O., Friction stir welding on T-joints: residual stress evaluation, in 8º Congresso Nacional de Mecânica Experimental, 2010.
[3]  Hamed Jamshidi A., Serajzadeh S., and Kokabi H. A., Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061," The International Journal of Advanced Manufacturing Technology, Vol. 61, pp. 149-160, 2012.
[4]  Ting L.and Qing-yu S., Residual stresses of friction stir welded 2024-T4 joints, Materials Science Forum, Vol. 582, pp. 263-266, 2008.
[5]  Richter-Trummer V., Moreira P. M. G. P., and Ribeiro J., The contour method for residual stress determination applied to an AA6082-T6 friction stir butt weld, Materials Science Forum, Vol. 681, pp.1 77-188, 2011..
[6]  Jamshidi Aval H., Microstructure and residual stress distributions in friction stir welding of dissimilar aluminium alloys," Materials & Design, Vol. 87, pp. 405-413, 2015.
 [7] Linton V. M. and Ripley M. I., Influence of time on residual stresses in friction stir welds in agehardenable 7xxx aluminium alloys, Acta Materialia, Vol. 56, pp. 4319-4327, 2008.
[8]  Woo W. and Feng Z., Neutron diffraction measurements of time-dependent residual stresses generated by severe thermomechanical deformation, Scripta Materialia, Vol. 61, pp. 624-627, 2009.
[9]  Caroline J., de M. B., Anne D., and Aude S., Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061-T6 and 2014-T6 aluminum alloys, Journal of Materials Processing Technology, Vol. 213, pp. 826-837, 2013.
[10]                Cole E. G., Fehrenbacher A., Duffie N. A., and Zinn M. R., Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-t6 and 7075-t6, The International Journal of Advanced Manufacturing Technology, Vol. 71, pp. 643-652, 2014.
[11]                Terasaki T. and Akiyama T., Mechanical Behaviour of Joints in FSW: Residual Stress, Inherent Strain and Heat Input Generated by Friction Stir Welding, Welding in the World, Vol. 47, pp. 24-31, 2003.
[12]                Guo J. F., Chen H. C., Sun C. N., Bi G., and Sun Z., Friction stir welding of dissimilar materials between AA6061and AA7075 Al alloys effects of process parameters, Materials and Design, Vol. 56, pp. 185-192, 2014.
[13]                Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, ed, 2013.
[14]                Kelsey R. A., Measuring Non-Uniform Residual Stresses by the Hole Drilling Method, Proceedings SESA, Vol. 14, pp. 181-194, 1956.
[15]                Schajer G. S., Application of Finite Element Calculations to Residual Stress Measurements, Journal of Engineering Materials and Technology, Vol. 103, pp. 157-163, 1981.
[16]                Schajer G. S., Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling Method, Journal of Engineering Materials and Technology, vol. 110, pp. 338-343, 1988.
[17]                Liu C. and Yi X., Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method, Materials & Design, Vol. 46, pp. 366-371, 4// 2013.
[18]                Flaman M. T., Mills B. E., Boag J. M, Analysis of StressVariation-With-Depth Measurement Procedures for the Center-Hole Method of Residual Stress Measurement, Experimental Techniques, Vol. 11, pp. 35-37, 1987.
[19]                Lemmen H. J. K., Alderliesten R. C., Pieters R. R. G. M., Benedictus R., and P. J. A., Yield Strength and Residual Stress Measurements on Friction-Stir Welded Aluminum Alloys, Journal of Aircraft, Vol. 47, pp. 1570-1583, 2010.
[20]                Sedighi M., Khandae M., and. Joudaki J., Calibration Coefficients for Residual Stress Measurement in Incremental Hole Drilling Method, Modares Mechanical Engineering, Vol. 11, pp. 19-27, 2011.
[21] Azizi A., Zakeri Mehrabad V., Mostofi Zadeh A., and Azarafza R., Influence of friction stie welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints," Modares Mechanical Engineering, Vol. 13, pp. 56-66, 2013.